Buffer size in Erlang / Golang port example - go

I have a crude Erlang-to-Golang port example, passing data from Erlang to Golang and echoing the response.
Problem is the amount of data I can transfer seems to be limited to 2^8 bytes (see below). I thought the problem was probably on the Golang side (not creating a big enough buffer) but replacing bufio.NewReader with bufio.NewReaderSize didn't work. So am now thinking the problem is maybe on the Erlang side.
What do I need to do to increase the buffer size / be able to echo a message larger than 2^8 bytes ?
TIA
justin#justin-ThinkPad-X240:~/work/erlang_golang_port$ erl -pa ebin
Erlang/OTP 17 [erts-6.4.1] [source] [64-bit] [smp:4:4] [async-threads:10] [kernel-poll:false]
Eshell V6.4.1 (abort with ^G)
1> port:start("./echo").
<0.35.0>
2> port:ping(65000).
65000
3> port:ping(66000).
** exception error: bad argument
in function port:call_port/1 (port.erl, line 20)
4> port:start("./echo").
<0.40.0>
5> port:ping(66000).
65536
Go
package main
import (
"bufio"
"os"
)
const Delimiter = '\n'
func main() {
// reader := bufio:NewReader(os.Stdin)
reader := bufio.NewReaderSize(os.Stdin, 1677216) // 2**24;
bytes, _ := reader.ReadBytes(Delimiter)
os.Stdout.Write(bytes[:len(bytes)-1])
}
Erlang
-module(port).
-export([start/1, stop/0, init/1]).
-export([ping/1]).
-define(DELIMITER, [10]).
start(ExtPrg) ->
spawn(?MODULE, init, [ExtPrg]).
stop() ->
myname ! stop.
ping(N) ->
Msg=[round(65+26*random:uniform()) || _ <- lists:seq(1, N)],
call_port(Msg).
call_port(Msg) ->
myname ! {call, self(), Msg},
receive
{myname, Result} ->
length(Result)
end.
init(ExtPrg) ->
register(myname, self()),
process_flag(trap_exit, true),
Port = open_port({spawn, ExtPrg}, []),
loop(Port).
loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, Msg++?DELIMITER}},
receive
{Port, {data, Data}} ->
Caller ! {myname, Data}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, _Reason} ->
exit(port_terminated)
end.

If you use start_link instead, you'll see that the port crashes after the first command:
1> port:start('go run port.go').
<0.118.0>
2> port:ping(65000).
65000
** exception error: port_terminated
If you change the Go code to run in a loop, this crash can be avoided:
func main() {
for {
// reader := bufio:NewReader(os.Stdin)
reader := bufio.NewReaderSize(os.Stdin, 1677216) // 2**24;
bytes, _ := reader.ReadBytes(Delimiter)
os.Stdout.Write(bytes[:len(bytes)-1])
}
}
Now we can see another interesting result:
33> c(port).
{ok,port}
40> port:ping(66000).
65536
41> port:ping(66000).
464
42> port:ping(66000).
65536
43> port:ping(66000).
464
Now we can see that no data is actually lost, it's just buffered in the port. Since you have not specified a framing protocol (using {packet, N} or {line, N} you are responsible yourself for collecting the data. It also seems that the internal buffer size of an Erlang port is 64K (although I found no documentation of this and no way to change it).
If you change your receive to get all data before returning, you'll every byte each time:
loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, Msg++?DELIMITER}},
Caller ! {myname, receive_all(Port, 10)},
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, _Reason} ->
exit(port_terminated)
end.
receive_all(Port, Timeout) -> receive_all(Port, Timeout, []).
receive_all(Port, Timeout, Data) ->
receive
{Port, {data, New}} ->
receive_all(Port, Timeout, [New|Data])
after Timeout ->
lists:flatten(lists:reverse(Data))
end.
Running this, we get:
1> c(port).
{ok,port}
2>
3> port:start('go run port.go').
<0.311.0>
4> port:ping(66000).
66000
5> port:ping(66000).
66000
6> port:ping(66000).
66000

2^8 is 256, not 65536 which is 2^16 (or 2 bytes).
For excluding golang program you can simply replace your echo with GNU cat
Default message max size for port communication is 64k, so when your port receives messages, the first one is leading 64k of the string. You can read port again to gain remaining data but you just drop them in your code.
If you really want to communicate on line-based protocol you should configure your port accordingly:
{line, L}
Messages are delivered on a per line basis. Each line
(delimited by the OS-dependent newline sequence) is delivered in one
single message. The message data format is {Flag, Line}, where Flag is
either eol or noeol and Line is the actual data delivered (without the
newline sequence).
L specifies the maximum line length in bytes. Lines longer than this
will be delivered in more than one message, with the Flag set to noeol
for all but the last message. If end of file is encountered anywhere
else than immediately following a newline sequence, the last line will
also be delivered with the Flag set to noeol. In all other cases,
lines are delivered with Flag set to eol.
The {packet, N} and {line, L} settings are mutually exclusive.
So your code would be
Port = open_port({spawn, ExtPrg}, [{line, ?PACKET_SIZE]),
%%...
{call, Caller, Msg} ->
Port ! {self(), {command, Msg++?DELIMITER}},
D = read_data(Port, []),
Caller ! {myname, D},
loop(Port);
%%...
read_data(Port, Prefix) ->
receive
{Port, {data, {noeol, Data}}} ->
read_data(Port, Prefix ++ Data);
{Port, {data, {eol, Data}}} ->
Prefix ++ Data
end.

I have been struggling with the similar problem.
Here the complete code of pipe module.
It allows sent text data to port and read all replies.
-module(apr_pipe).
-export([open_pipe/2,send/2,close/1]).
-export([loop/1,status/1,init/1]).
-include_lib("kernel/include/logger.hrl").
-define(MAX_LINE_LEN,4096).
open_pipe(Path,Cmd) ->
State = #{path => Path, cmd => Cmd},
Pid = spawn(?MODULE,init,[State]),
Pid.
init(State) ->
#{path := Path,cmd := Cmd} = State,
FullFn = filename:join(Path,Cmd),
Settings = [{line,?MAX_LINE_LEN},use_stdio,stderr_to_stdout,hide,binary,exit_status],
Port = erlang:open_port({spawn_executable,FullFn},Settings),
State2 = State#{port => Port, data => #{}},
loop(State2).
send(Pid,Data) -> Pid!{self(),send,Data}.
close(Pid) -> Pid!{self(),send,close}.
status(Pid) -> Pid!{self(),status}.
get_eol() -> <<"\n">>.
loop(State) ->
receive
{_Pid,send,close} ->
?LOG(notice,"got cmd: Close",[]),
Port = maps:get(port,State),
port_close(Port),
exit(normal);
{Pid,send,Data} ->
?LOG(notice,"Send Data ...",[]),
Port = maps:get(port,State),
port_command(Port,Data),
port_command(Port,get_eol()),
State2 = State#{status => data_sent, client => Pid},
loop(State2);
{Pid,status} ->
Port = maps:get(port,State),
?LOG(notice,"Status: Port: ~p State: ~p",[Port,State]),
Pid!{status,Port,State},
loop(State);
% port messages.
{Port, {data,{noeol,Data}}} ->
?LOG(notice,"Port: ~p Data: ~p",[Port,Data]),
CurData = maps:get(cur_data,State,[]),
State2 = State#{cur_data => [Data | CurData]},
loop(State2);
{Port, {data, {eol,Data}}} ->
?LOG(notice,"Port: ~p Data: ~p",[Port,Data]),
CurData = [Data | maps:get(cur_data,State,[])],
CurData2 = lists:reverse(CurData),
Reply = list_to_binary(CurData2),
Client = maps:get(client,State,undefined),
State2 = State#{cur_data => [], client => undefined},
case Client of
undefined -> ?LOG(error,"can not sent reply. Client: ~p Reply: ~p", [Client,Reply]),
loop(State2);
_ -> Client!{reply,Reply},
loop(State2)
end;
{_Port, closed} ->
?LOG(warning, "Port: ~p closed",[]),
exit(normal);
{'EXIT', Port, Reason} ->
?LOG(notice,"Port: ~p exit. Reason: ~p",[Port,Reason]),
exit(Reason);
_Other -> ?LOG(error,"unexpected message: ~p",[_Other]),
exit({error,{unexpected_message,_Other}})
end.

Related

How to call using gen_event in Erlang?

I am using a gen_event behaviour and when i am trying to issue a gen_event:call i get the following error:
> =CRASH REPORT==== 22-Dec-2019::19:17:43.030000 === crasher:
> initial call: gen_event:init_it/6
> pid: <0.215.0>
> registered_name: hev
> exception exit: {undef,[{fm,state,[<0.215.0>],[]},
> {erl_eval,do_apply,6,
> [{file,"erl_eval.erl"},{line,684}]},
> {shell,exprs,7,[{file,"shell.erl"},{line,686}]},
> {shell,eval_exprs,7,
> [{file,"shell.erl"},{line,642}]},
> {shell,eval_loop,3,
> [{file,"shell.erl"},{line,627}]}]}
> in function gen_event:terminate_server/4 (gen_event.erl, line 354)
> ancestors: [<0.212.0>]
> message_queue_len: 1
> messages: [{'EXIT',<0.212.0>,normal}]
> links: []
> dictionary: []
> trap_exit: true
> status: running
> heap_size: 610
> stack_size: 27
> reductions: 279 neighbours:
My event manager and event handler get spawned and i can successfully issue notify (i get ok back) but i can not call:
Module
-module(hev).
-export([start/0,append/2,state/1]).
-export([init/1,terminate/2,code_change/3,handle_call/2,handle_event/2]).
-record(state,{
xs=[]
}).
-behaviour(gen_event).
%callbacks
init([])->
{ok,#state{xs=[1]}}.
**API**
start()->
{ok,Pid}=gen_event:start_link({local,?MODULE}),
gen_event:add_handler(Pid,some_handler,[]),
Pid.
append(Pid,Elem)->
gen_event:notify(Pid,{append,Elem}).
state(Pid)->
gen_event:call(Pid,state).
Handlers
handle_event({append,Elem},State=#state{xs=XS})->
{ok,#state{xs=[Elem|XS]}};
handle_call(state,State})->
{ok,State,State};
handle_call(Event,State)->
{ok,nada_for_you,State}.
P.S I have not posted all the requried methods (code_change,terminate..etc) but they exist.
I have not posted all the requried methods (code_change,terminate..etc) but they exist.
1) They are optional anyway. Check the big green Notes in the docs, e.g. terminate().
2) As for your error message:
pid: <0.215.0>
registered_name: hev
exception exit: {undef,[{fm,state,[<0.215.0>],[]},
it seems to be saying that there was a process (with pid=<0.215.0>), which was registered with the name hev, that tried to execute a function named fm:state() with one argument but there was no function fm:state/1 defined anywhere, hence the undef exception. Because you posted no module named fm, the error makes no sense in relation to the code you posted.
3) Your code also specifies a module named some_handler that does not exist:
gen_event:add_handler(Pid,some_handler,[]),
4) You have a basic syntax error here:
handle_call(state,State})->
5) You are calling a couple of functions with the wrong number of arguments.
You need to be more diligent about posting code that will actually produce the error you experienced.
Here's a simple example using gen_event to create a counter:
-module(counter).
-behaviour(gen_event).
-compile(export_all).
%% Callback functions:
init(StartingCount) -> % Called by gen_event:add_handler()
State = StartingCount,
{ok, State}.
terminate(_Reason, State) ->
io:format("Terminating state was: ~w~n", [State]).
% Calls to gen_event:notify() cause this function to execute:
handle_event({increase, Change}, State) ->
NewState = State+Change,
{ok, NewState};
handle_event({decrease, Change}, State) ->
NewState = State-Change,
{ok, NewState}.
% Calls to gen_event:call() cause this function to execute:
handle_call(get_count, State) ->
Reply = io_lib:format("Reply from handle_call(): count is ~w~n", [State]),
{ok, Reply, State};
handle_call({increase_and_get_count, Change}, State) ->
NewState = State+Change,
Reply = io_lib:format("Reply from handle_call(): count is ~w~n", [NewState]),
{ok, Reply, NewState}.
%% User interface functions:
start(StartingCount) ->
ServerName = gen_event_counter,
CallbackModule = counter,
{ok, _Pid} = gen_event:start_link({local, ServerName}),
%Name of process running gen_event server is: gen_event_counter
ok = gen_event:add_handler(ServerName, CallbackModule, StartingCount).
%StartingCount is passed to init() callback
stop() ->
ok = gen_event:stop(gen_event_counter),
stopped.
send_request_with_notify(Request) ->
gen_event:notify(gen_event_counter, Request). % returns immediately, does not wait for a reply.
% Request = {increase, 1}, {decrease, 2}, etc.
% Request is passed as first arg to handle_event().
send_request_with_call(Request) ->
Reply = gen_event:call(gen_event_counter, counter, Request), % waits for a reply
% Request is passed as first arg to handle_call()
io:format("send_request_with_call() returned => ~s", [Reply]).
In the shell:
~/erlang_programs/gen_event$ erl
Erlang/OTP 20 [erts-9.3] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10] [hipe] [kernel-poll:false]
Eshell V9.3 (abort with ^G)
1> c(counter).
counter.erl:3: Warning: export_all flag enabled - all functions will be exported
{ok,counter}
2> counter:start(0).
ok
3> counter:send_request_with_call(get_count).
send_request_with_call() returned => Reply from handle_call(): count is 0
ok
4> counter:send_request_with_notify({increase, 2}).
ok
5> counter:send_request_with_call(get_count).
send_request_with_call() returned => Reply from handle_call(): count is 2
ok
6> counter:send_request_with_call({increase_and_get_count, 5}).
send_request_with_call() returned => Reply from handle_call(): count is 7
ok
7> counter:stop().
Terminating state was: 7
stopped
8>
After fixing all the errors in your code:
-module(hev).
-compile(export_all).
-behaviour(gen_event).
-record(state,{
xs=[]
}).
%callbacks
init(no_args)->
{ok, #state{xs=[1]} }.
handle_event({append,Elem}, #state{xs=XS} ) ->
io:format("hev:handle_event() called~n"),
{ok, #state{xs=[Elem|XS]}}.
handle_call(get_state, State)->
Reply = State,
{ok, Reply, State};
handle_call(_Other, State)->
Reply = nada_for_you,
{ok, Reply, State}.
%**API**
start()->
gen_event:start_link({local, ?MODULE}), %Sets the gen_event server name to ?MODULE
% Server Callback Args for
% Name module init()
gen_event:add_handler(?MODULE, ?MODULE, no_args).
%Tells the gen_event server named ?MODULE to look for the callback functions
%in a module also named ?MODULE
append(Elem)->
% Server Request
% Name (matches against 1st arg in handle_event() )
gen_event:notify(?MODULE, {append, Elem}).
get_state()->
% Server Calback Request
% Name module (matches against 1st arg in handle_call() )
gen_event:call(?MODULE, ?MODULE, get_state).
other_calls() ->
gen_event:call(?MODULE, ?MODULE, {set_state, [1, 2, 3]}).
stop() ->
ok = gen_event:stop(?MODULE),
stopped.
In the shell:
~/erlang_programs/gen_event$ erl
Erlang/OTP 20 [erts-9.3] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10] [hipe] [kernel-poll:false]
Eshell V9.3 (abort with ^G)
1> c(hev).
hev.erl:2: Warning: export_all flag enabled - all functions will be exported
{ok,hev}
2> hev:start().
ok
3> hev:get_state().
{state,[1]}
4> hev:append(45).
ok
hev:handle_event() called
5> hev:get_state().
{state,[45,1]}
6> hev:other_calls().
nada_for_you
7> hev:stop().
stopped
8>
Note that notify() causes the handle_event() function in all the modules that were added with add_handler() to execute, whereas call() targets a specific module's handle_call() function.

Basic syntax error in erlang

I'm trying to spot the syntax error in the following piece of code however I just can't really see what went wrong. I'm sure it's basic but I just need a fresh pair of eyes on this code:
sloop(Listen)->
{ok, Socket} = gen_tcp:accept(Listen),
io:format("Someone connected"),
master ! {add,Socket},
spawn(fun() -> sloop(Listen) end),
receive
{tcp, Socket, Bin} ->
case read(Bin) of
{join,Channel} ->
tracker ! {self(),get,Socket},
receive
void ->
master ! {delete, Socket},
A = lists:dropwhile(fun(A) -> A /= Channel end, resgistered()),
case A of
[H|T] -> H ! {add,Socket};
_ -> register(Channel,spawn(fun() -> listenerSocket([]) end))
end,
Channel ! {add, Socket},
tracker ! {insert,Socket, Channel};
{ok, Value} ->
Value ! {delete,Socket},
tracker ! {delete,Socket},
A = lists:dropwhile(fun(A) -> A /= Channel end, resgistered()),
case A of
[H|T] -> H ! {add,Socket};
_ -> register(Channel,spawn(fun() -> listenerSocket([]) end))
end,
Channel ! {add, Socket},
tracker ! {insert,Socket, Channel};
{message, Msg} ->
tracker ! {self(),get,Socket},
receive
{ok, Value} -> Value ! {broadcast, Msg}
end
end;
{tcp_closed, Socket} -> io:format("Someone disconnected")
end.
Syntax error before "." line 50.
Line 50 is the last line in this snippet of code
You're missing an end. The final end you show matches case read(Bin)..., so you need one more for the enclosing receive.

Sequent reading from socket on Windows fails (haskell sockets)

I wrote a simple TCP-client for some device, which consumes and produces 8-byte packets (the code of send-command-receive-result function is below).
When I run it on linux, it works perfectly, being part of the loop (send-recv-send-recv-...), but on windows it receives only first msg from device (send-recv-send-send-...). The packets are still going - I could clearly see them with Wireshark - but something under my client just ignores them (or truncates to zero?). It doesn't even print "Data was read!" - looks like the reading stucks and gets killed by timeout function.
Before that, I used the sockets directly; changing to HandleStream yelded no difference at all. Wrapping main in withSocketsDo did nothing, too.
transmit :: Int -> HandleStream ByteString -> ByteString -> IO [Bytestring]
transmit delay sock packet = do
let input = timeout delay $ sock `readBlock` 8 <* putStrLn "\nData was read!"
sock `writeBlock` pack
strings <- whileJust input
return [str | Right str <- strings]
whileJust action = do
result <- action
case result of
Just a -> (:) <$> return a <*> whileJust action
Nothing -> return []
What am I doing wrong?

Erlang: Server cursor hangs on command line?

The server running in the shell hangs and cannot accept any input. Is there any way to make the program allow input while still running the server loop to accept incoming connections?
-module(cp1).
-export([start/0,accept/1,enter_loop/1,loop/1]).
start() ->
io:format("Started Server:~n"),
{ok, Socket} = gen_tcp:listen(4001, [binary, {packet, 0},{reuseaddr, true},{active, false}]),
accept(Socket).
accept(ListenSocket) ->
case gen_tcp:accept(ListenSocket) of
{ok, Socket} ->
Pid = spawn(fun() ->
io:format("Connection accepted ~n", []),
enter_loop(Socket)
end),
io:format("Pid ~p~n",[Pid]),
gen_tcp:controlling_process(Socket, Pid),
Pid ! ack,
accept(ListenSocket);
Error ->
exit(Error)
end.
enter_loop(Sock) ->
%% make sure to acknowledge owner rights transmission finished
receive ack -> ok end,
loop(Sock).
loop(Sock) ->
%% set soscket options to receive messages directly into itself
inet:setopts(Sock, [{active, once}]),
receive
{tcp, Socket, Data} ->
io:format("Got packet: ~p~n", [Data]),
io:format("Send packet: ~p~n",[Data]),
gen_tcp:send(Socket, Data),
loop(Socket);
{tcp_closed, Socket} ->
io:format("Socket ~p closed~n", [Socket]);
{tcp_error, Socket, Reason} ->
io:format("Error on socket ~p reason: ~p~n", [Socket, Reason])
end.
Spawn a process for server loop instead of calling the start function. Pid = spawn(fun()-> cp1:start() end).

why does nmap show that my tcp server is not listening on the port it should be?

I intend to build on this code, found here
However, I notice I can telnet to this server on the local host. Can't from another computer. I did a quick nmap scan, which reported that nothing was listening on the port I had selected.
For purposes of troubleshooting, I had shut down my firewall, so I've ruled that out as a possible problem.
Clues from haskell windows programmers would be appreciated.
It seems that the socket got bind to localhost (127.0.0.1), thats why you are not able to connect it from other machine and it only connect from local machine. Try to use Bind API to first create the socket and then bind the socket to "Any address" which binds the socket to every interface available on local machine.
This is for future new haskellers.
I based my code on this example.
I made improvements based on this reddit thread, and suggestions made above. The import statements are still sloppy, but fixing them is left as the proverbial "exercise for the reader". I invite any additional suggestions leading to improvements.
import Network.Socket
import Control.Monad
import Network
import System.Environment (getArgs)
import System.IO
import Control.Concurrent (forkIO)
main :: IO ()
main = withSocketsDo $ do
[portStr] <- getArgs
sock <- socket AF_INET Stream defaultProtocol
let port = fromIntegral (read portStr :: Int)
socketAddress = SockAddrInet port 0000
bindSocket sock socketAddress
listen sock 1
putStrLn $ "Listening on " ++ (show port)
sockHandler sock
sockHandler :: Socket -> IO ()
sockHandler sock' = forever $ do
(sock, _) <- Network.Socket.accept sock'
handle <- socketToHandle sock ReadWriteMode
hSetBuffering handle NoBuffering
forkIO $ commandProcessor handle
commandProcessor :: Handle -> IO ()
commandProcessor handle = forever $ do
line <- hGetLine handle
let (cmd:arg) = words line
case cmd of
"echo" -> echoCommand handle arg
"add" -> addCommand handle arg
_ -> do hPutStrLn handle "Unknown command"
echoCommand :: Handle -> [String] -> IO ()
echoCommand handle arg = do
hPutStrLn handle (unwords arg)
addCommand :: Handle -> [String] -> IO ()
addCommand handle [x,y] = do
hPutStrLn handle $ show $ read x + read y
addCommand handle _ = do
hPutStrLn handle "usage: add Int Int"
I usually go with
netstat -an | grep LISTEN
If you see the port listed, something is listening. I can't remember offhand what the lsof command is for sockets and Google isn't giving up the goods.

Resources