Cassandra multiple nodes in different data centers on same server - cassandra-2.0

Just want to know if I can configure multiple nodes from different data centers on the same physical server. Example - Want to have 2 data centers with 3 nodes each. 1 node from each data center will be on each server.
Total of 2 data centers, 6 nodes on 3 physical servers.

You can technically configure it as you describe; however, DataCenter is typically thought of as a location, so having nodes in two locations but configured as a datacenter is confusing (especially for anyone who would have to troubleshoot the environment later).
A best practice would be to have the topology of 3 nodes in each data center (actually be physically located in each data center). Then you could configure the cluster to have your data in both data centers for availability and also have appropriate latency within a single data center for all reads, writes, etc...
For example, using RF: 3 in each data center and then Using a consistency of LOCAL_QUORUM would balance data availability while reducing latency of your request. This example configuration would ensure the read/write occurs in a single data center (lower latency than across datacenters) but ensures the data is saved across both data centers (eventually consistent design).

Yes it is possible to follow the topology you have listed but think about the following scenario
With two nodes from different DC on single machine, there is high chance that you will have the unit of data replicated on a single machine in two different data center nodes. If the single machine fails you would loose two copies of a piece of data.
Assuming you have RF of DC1:2 DC2:2 and using a CF of Quorum, you would need 3 nodes to respond to read requests. With one physical server being down a unit of data will be loosing 2 replicas and your reads will fail and indeed the writes with same CF will also fail.

Related

Number of nodes AWS Elasticsearch

I read documentation, but unfortunately I still don't understand one thing. While creating AWS Elasticsearch domain, I need to choose "Number of nodes" in "Data nodes" section.
If i specify 3 data nodes and 3-AZ, what it actually means?
I have suggestions:
I'll get 3 nodes with their own storages (EBS). One of node is master and other 2 are replicas in different AZ. Just copy of master, not to lose data if master node become broken.
I'll get 3 nodes with their own storages (EBS). All of them will work independent and on their storadges are different data. So at the same time data can be processed by different nodes and store on different storages.
It looks like in other AZ's should be replicas. but then I don't understand why I have different values of free space on different nodes
Please, explain how it works.
Many thanks for any info or links.
I haven't used AWS Elasticsearch, but I've used the Cloud Elasticsearch service.
When you use 3 AZ (availability zones), means that your cluster will use 3 zones in order to make it resilient. If one zone has problems, then the nodes in that zone will have problems as well.
As the description section mentions, you need to specify multiples of 3 if you choose 3 AZ. If you have 3 nodes, then every AZ will have one zone. If one zone has problems, then that node is out, the two remaining will have to pick up from there.
Now in order to answer your question. What do you get with these configurations. You can check so yourself. Use this via kibana or any HTTP client
GET _nodes
Check for the sections:
nodes.roles
nodes.attributes
In the various documentations, blog posts etc you will see that for production usage, 3 nodes and 3 AZ is a good starting point in order to have a resilient production cluster.
So let's take it step by step:
You need an even number of master nodes in order to avoid the split brain problem.
You need more than one node in your cluster in order to make it resilient (if the node is unavailable).
By combining these two you have the minimum requirement of 3 nodes (no mention of zones yet).
But having one master and two data nodes, will not cut it. You need to have 3 master-eligible nodes. So if you have one node that is out, the other two can still form a quorum and vote a new master, so your cluster will be operational with two nodes. But in order for this to work, you need to set your primary shards and replica shards in a way that any two of your nodes can hold your entire data.
Examples (for simplicity we have only one index):
1 primary, 2 replicas. Every node holds one shard which is 100% of the data
3 primaries, 1 replica. Every node will hold one primary and one replica (33% primary, 33% replica). Two nodes combined (which is the minimum to form a quorum as well) will hold all your data (and some more)
You can have more combinations but you get the idea.
As you can see, the shard configuration needs to go along with your number and type of nodes (master-eligible, data only etc).
Now, if you add the availability zones, you take care of the problem of one zone being problematic. If your cluster was as a whole in one zone (3 nodes in one node), then if that zone was problematic then your whole cluster is out.
If you set up one master node and two data nodes (which are not master eligible), having 3 AZ (or 3 nodes even) doesn't do much for resiliency, since if the master goes out, your cluster cannot elect a new one and it will be out until a master node is up again. Now for the same setup if a data node goes out, then if you have your shards configured in a way that there is redundancy (meaning that the two nodes remaining have all the data if combined), then it will work fine.
Your answers should be covered in following three points.
If i specify 3 data nodes and 3-AZ, what it actually means?
This means that your data and replica's will be available in 3AZs with none of the replica in same AZ as the data node. Check this link. For example, When you say you want 2 data nodes in 2 AZ. DN1 will be saved in (let's say) AZ1 and it's replica will be stored in AZ2. DN2 will be in AZ2 and it's replica will be in AZ1.
It looks like in other AZ's should be replicas. but then I don't understand why I have different values of free space on different nodes
It is because when you give your AWS Elasticsearch some amount of storage, the cluster divides the specified storage space in all data nodes. If you specify 100G of storage on the cluster with 2 data nodes, it divides the storage space equally on all data nodes i.e. two data nodes with 50G of available storage space on each.
Sometime you will see more nodes than you specified on the cluster. It took me a while to understand this behaviour. The reason behind this is when you update these configs on AWS ES, it takes some time to stabilize the cluster. So if you see more data or master nodes as expected hold on for a while and wait for it to stabilize.
Thanks everyone for help. To understand how much space available/allocated, run next queries:
GET /_cat/allocation?v
GET /_cat/indices?v
GET /_cat/shards?v
So, if i create 3 nodes, than I create 3 different nodes with separated storages, they are not replicas. Some data is stored in one node, some data in another.

HBase Replication - Replicate data in 3 data centers

I our application we are having data from 3 different countries and we are persisting data in HBase.
In each country, we will be keeping data of all the 3 countries.
To achieve this, is it possible that we create our Hadoop cluster using data centers in all these 3 countries and we keep data replication as 3. So due to rack-awareness feature, our data will get auto replicated in all the 3 countries?
Any pointers will be of great help.
Thanks
You can’t have HBASE cluster across countries. This won’t work because of latency, failover problems, network issues, etc.
A good option would be to have 3 clusters, one HBase table per country and sync the tables between clusters as proposed above
As far as I know only Google has successfully implemented a multi-country database providing both consistency and availability: Spanner. But the key elements of the solution are: a private physical network between the Data Centers and their own implementation of NTP which guarantee that all servers across the world have the same clock with just a few milliseconds precision.
This solution looks theoretically feasible but writes may become pretty slow as data needs to replicated to 3 nodes located in different geographies. It needs to be tried out and check whether the latency is within tolerable limit.
Another option could be, to have three different HBase clusters at three locations and design tables in such a way that tables from one HBase cluster could be copied to another one during night hours to keep the data in sync daily. In this case, an HBase cluster will have current data from it's own location but the data from other two cities will lag by a day.

Multiple datacenter replication and local quorum?

I created a cluster from 6 nodes.
3 nodes in Eu west1 and 3 nodes in EU west2
I set the locality for every group of nodes like : --locality=region=europe,datacenter=west1
I also set the replica to 6 to have all ranges and all data on every node.
What will happen if the connection between data centers is lost the whole cluster goes down ?
I tried to kill 3 nodes in one of the datacenters and cluster is not operational because the majority of the nodes are down and quorum is less that 4.
Is it possible to make the 2 datacentes to work with their local quorum 2/3
I also played a bit with replications settings and sometimes cluster is healthy if I kill 3 nodes from 6 and was I was able to write to the cluster. Sometimes I can only read from the cluster. Cluster is working with replica of 5 and 3 nodes killed from 6. Still paying with this but if someone can give me more information will be very helpful.
To be able to replicate across datacentes is very cool feature but if I lost the whole cluster when one of the datacenters is down ruin the whole good idea at least for me.
CockroachDB requires a majority of replicas to be fully operational, which means > half, not >= half. In order to survive the loss of a full datacenter or region, you must have three DCs/regions, not two. Try running two nodes in each of three regions instead of three nodes in two regions.
Is it possible to make the 2 datacenters to work with their local quorum 2/3
Not for a single table (because it would be impossible to guarantee consistency if each datacenter were able to act in isolation from the other). You've configured the data to be replicated across all six replicas, which means four replicas are required to make a quorum. If you want each datacenter to be able to operate independently of the other, you would need two separate tables, with each one configured to be located within one of the datacenters.
Thanks for the answer just to clear few thing. But looks like you got my point and what I want to accomplish.
But as far as I understand if I have 2x3 node in 2 different DC's if one DC goes down. I have 3 live nodes for the quorum I need at least 4 . N/2 +1.
So if I have 3x3 I can lost one DC because if I have 2 DC's live I will have a quorum .
And one last question if I don't set replication to 9 if I loose 3 nodes some in one DC some ranges will be not available right ?

Datastax Cassandra - Spanning Cluster node across amazon region

I planning to launch three EC2 instance across Amazon hosting region. For say, Region-A,Region-B and Region-C.
Based on the above plan, Each region act as Cluster(Or Datacenter) and have one node.(Correct me if I am wrong).
Using this infrastructure, Can I attain below configuration?
Replication Factor : 2
Write and Read Level:QUORUM.
My basic intention to do these are to achieve "If two region are went down, I can be survive with remaining one region".
Please help me with your inputs.
Note: I am very new to cassandra, hence whatever your inputs you are given will be useful for me.
Thanks
If you have a replication factor of 2 and use CL of Quorum, you will not tolerate failure i.e. if a node goes down, and you only get 1 ack - thats not a majority of responses.
If you deploy across multiple regions, each region is, as you mention, a DC in your Cluster. Each individual DC is a complete replica of all your data i.e. it will hold all the data for your keyspace. If you read/write at a LOCAL_* consistency (eg. LOCAL_ONE, LOCAL_QUORUM) level within each region, then you can tolerate the loss of the other regions.
The number of replicas in each DC/Region and the consistency level you are using to read/write in that DC will determine how much failure you can tolerate. If you are using QUORUM - this is a cross-DC consistency level. It will require a majority of acks from ALL replicas in your cluster in all DCs. If you loose 2 regions then its unlikely that you will be getting a quorum of responses.
Also, its worth remembering that Cassandra can be made aware of the AZ's it is deployed on in the Region and can do its best to ensure replicas of your data are placed in multiple AZs. This will give you even better tolerance to failure.
If this was me and I didnt need to have a strong cross-DC consistency level (like QUORUM). I would have 4 nodes in each region, deployed across each AZ and then a replication factor of 3 in each region. I would then be reading/writing at LOCAL_QUORUM or LOCAL_ONE (preferably). If you go with LOCAL_ONE than you could have fewer replicas in each DC e.g a replication factor of 2 with LOCAL_ONE means you could tolerate the loss of 1 replica.
However, this would be more expensive than what your initially suggesting but (for me) that would be the minimum setup I would need if I wanted to be in multiple regions and tolerate the loss of 2. You could go with 3 nodes in each region if you wanted to really save costs.

cassandra replication read performance oddities

Sorry, this will take a bit to explain... We're testing the performance of Cassandra using YCSB. We have a 3-node setup and a 9-node setup. The 3-node setup is pretty simple: replication=1 (no copies).
Our 9 node setup contains 3 data centers (3 nodes per data center). In the 9 node setup, we also kept replication=1 because we understand that Cassandra's default NetworkTopologyStrategy is going to automatically replicate across data centers. That effectivly gives us a copy of the data at each data center which is great because we want to test this.
Our read-only test against the 9 node setup uses the DCAwareRoundRobinPolicy to query against the "local" data center only. So, we are querying against just 3 of the 9 nodes and were expecting similar results to our simple 3-node setup. In fact we'd expect the results to be a little worse because of cassandra's read repair messages and also because we are using a QUORUM read consistency.
However, we found the opposite. Our read-only test on the 3 node simple setup performance was a little worse than our more complex 3 data center/9 node setup.
Data loaded on both clusters are the same. Read-only tests were run with varying thread counts and we noticed larger disparity with more threads. The 9-node setup got better with more threads, which should not have been the case because we verified that only the 3 nodes we connected to in our "local" data center are receiving queries.
So, why are reads faster in the more complex setup when we are still hitting the same number of nodes (3)? Our write-only test did not exhibit this behaviour.
Thanks in advance!

Resources