Lua random number generation - for-loop

I am having trouble with the math.random() function in Lua.
The code I'm trying to run is:
for x = 1,5 do
math.randomseed(os.time())
math.random(); math.random(); math.random()
value = math.random(0,9)
print(value)
end
The random number that is being printed is always the same.
What can be the possible solution to this? I want 5 unique random numbers.

Initialize random once (outside the loop), use many:
math.randomseed(os.time()) -- random initialize
math.random(); math.random(); math.random() -- warming up
for x = 1,5 do
-- random generating
value = math.random(0,9)
print(value)
end

Related

Which Lua function is better to use?

I took two ways to round numbers to decimals. First function just rounds the number:
function round(num)
local under = math.floor(num)
local over = math.floor(num) + 1
local underV = -(under - num)
local overV = over - num
if overV > underV then
return under
else
return over
end
end
The next two functions use this function to round a number to decimals:
function roundf(num, dec)
return round(num * (1 * dec)) / (1 * dec)
end
function roundf_alt(num, dec)
local r = math.exp(1 * math.log(dec));
return round(r * num) / r;
end
Why not simply
function round(num)
return num >= 0 and math.floor(num+0.5) or math.ceil(num-0.5)
end
Instead of math.floor(num) + 1 you can simply use math.ceil(num) btw.
Why do you multiply with 1 multiple times?
There are many things to consider when rounding numbers. Please do some research on how to handle special cases.

Random number within range and a given granularity in Golang

I've written the following code to create a random number between 0.0 and 10.0.
const minRand = 0
const maxRand = 10
v := minRand + rand.Float64()*(maxRand-minRand)
However, I would like to set the granularity to 0.05, so having all the digits as the least significant decimal should not be allowed, only 0 and 5 should be allowed, e.g.:
the value 7.73 is NOT VALID,
the values 7.7 and 7.75 ARE VALID.
How can I produce such numbers in Go?
You can divide with the granularity, get a pseudo random integer and then multiply with the granularity to scale the result down.
const minRand = 8
const maxRand = 10
v := float64(rand.Intn((maxRand-minRand)/0.05))*0.05 + minRand
fmt.Printf("%.2f\n", v)
This will print:
8.05
8.35
8.35
8.95
8.05
9.90
....
If you don't want to get the same sequence every time rand.Seed(time.Now().UTC().UnixNano()).
From the docs
Seed uses the provided seed value to initialize the default Source to a deterministic state. If Seed is not called, the generator behaves as if seeded by Seed(1). Seed values that have the same remainder when divided by 2^31-1 generate the same pseudo-random sequence. Seed, unlike the Rand.Seed method, is safe for concurrent use.
With lower bounds
const minRand = 0
const maxRand = 10
const stepRand = 0.05
v := float64(rand.Intn((maxRand-minRand)/stepRand))*stepRand + minRand
fmt.Printf("%.2f\n", v)

Speeding up simulation of the Levy motion algorithm

Here is my little script for simulating Levy motion:
clear all;
clc; close all;
t = 0; T = 1000; I = T-t;
dT = T/I; t = 0:dT:T; tau = T/I;
alpha = 1.5;
sigma = dT^(1/alpha);
mu = 0; beta = 0;
N = 1000;
X = zeros(N, length(I));
for k=1:N
L = zeros(1,I);
for i = 1:I-1
L( (i + 1) * tau ) = L(i*tau) + stable2( alpha, beta, sigma, mu, 1);
end
X(k,1:length(L)) = L;
end
q = 0.1:0.1:0.9;
quant = qlines2(X, q, t(1:length(X)), tau);
hold all
for i = 1:length(quant)
plot( t, quant(i) * t.^(1/alpha), ':k' );
end
Where stable2 returns a stable random variable with given parameters (you may replace it with normrnd(mu, sigma) for this case, it's not crucial); qlines2 returns quantiles needed for plotting.
But I don't want to talk about math here. My problem is that this implementation is pretty slow, and I would like to speed it up. Unfortunately, computer science is not my main field - I heard something about methods like memoization, vectorization and that there is a lot of other techniques, but I don't know how to use them.
For example, I'm pretty sure I should replace this filthy double for-loop somehow, but I'm not sure what to do instead.
EDIT: Maybe I should use (and learn...) another language (Python, C, any functional one)? I always though that Matlab/OCTAVE is designed for numerical computation, but if change, then for which one?
The crucial bit is, as you said, the for loops, Matlab does not like those, so vectorization is indeed the keyword. (Together with preallocating the space.
I just altered you for loop section somewhat so that you do not have to reset L over and over again, instead we save all Ls in a bigger matrix (also I elimiated the length(L) command).
L = zeros(N,I);
for k=1:N
for i = 1:I-1
L(k,(i + 1) * tau ) = L(k,i*tau) + normrnd(mu, sigma);
end
X(k,1:I) = L(k,1:I);
end
Now you can already see that X(k,1:I) = L(k,1:I); in the loop is obsolete and that also means that we can switch the order of the loops. This is crucial, because the i-steps are recursive (depend on the previous step) that means we cannot vectorize this loop, we can only vectorize the k-loop.
Now your original code needed 9.3 seconds on my machine, the new code still needs about the same time)
L = zeros(N,I);
for i = 1:I-1
for k=1:N
L(k,(i + 1) * tau ) = L(k,i*tau) + normrnd(mu, sigma);
end
end
X = L;
But now we can apply the vectorization, instead of looping throu all rows (the loop over k) we can instead eliminate this loop, and doing all rows at "once".
L = zeros(N,I);
for i = 1:I-1
L(:,(i + 1) * tau ) = L(:,i*tau) + normrnd(mu, sigma); %<- this is not yet what you want, see comment below
end
X = L;
This code need only 0.045 seconds on my machine. I hope you still get the same output, because I have no idea what you are calculating, but I also hope you could see how you go about vectorizing code.
PS: I just noticed that we now use the same random number in the last example for the whole column, this is obviously not what you want. Instad you should generate a whole vector of random numbers, e.g:
L = zeros(N,I);
for i = 1:I-1
L(:,(i + 1) * tau ) = L(:,i*tau) + normrnd(mu, sigma,N,1);
end
X = L;
PPS: Great question!

Matlab is slow when using user defined function with calculation in GPU

When I run the code shown below, the tic/toc pair inside the function shows it takes very short time (<< 1sec) to go through all the lines. However, it actually takes around 2.3secs to get the outputs!!! I use the tic/toc pair to measure the time.
tic
rnn.v = 11;
rnn.h = 101;
rnn.o = 7;
rnn.h_init = randn(1,rnn.h,'gpuArray');
rnn.W_vh = randn(rnn.v,rnn.h,'gpuArray');
rnn.W_hh = randn(rnn.h,rnn.h,'gpuArray');
rnn.W_ho = randn(rnn.h,rnn.o,'gpuArray');
inData.V = randn(10000,11,100,'gpuArray');
inData.TimeSteps =100;
inData.BatchSize = 10000;
[H,OX] = forward_pass(rnn, inData)
toc
All the matrices in rnn, and inData are gpuArray, so all the calculation are carried out in GPU. The outputs are also gpuArray.
function [H,OX] = forward_pass(rnn, inData)
tic;
%initial hidden state values
H_init = gpuArray(repmat(rnn.h_init,[inData.BatchSize,1]));
%initialize state H
H = zeros(inData.BatchSize, rnn.h, inData.TimeSteps,'gpuArray');
%initialize OX (which is H * Who)
OX = zeros(inData.BatchSize, rnn.o, inData.TimeSteps,'gpuArray');
for t = 1 : inData.TimeSteps
if t == 1
HX_t = H_init * rnn.W_hh...
+ inData.V(:,:,t) * rnn.W_vh;
else
HX_t = H(:,:,(t-1)) * rnn.W_hh...
+ inData.V(:,:,t) * rnn.W_vh;
end
H(:,:,t) = tanh(HX_t);
OX(:,:,t) = H(:,:,t) * rnn.W_ho;
end
toc;
end
Normally, if you use gather() function, it will be slow. I didn't use the gather() function to transfer the outputs to workspace, I don't know why it is still so slow. It looks like the last line "end" takes more than 2secs.
Anyone knows how to accelerate the function call?
First off, for proper benchmarking you do need to use gather either inside the function call or afterwards. In the former case, you would have a non-gpu output from the function call and in the latter case, a gpu-based datatype would be the output. Now, back to your problem, you are using very few TimeSteps and as such any optimization that you might try out won't reflect in a huge manner. Here's an optimized version that will show increased performance as you increase Timesteps -
function [H,OX] = forward_pass(rnn, inData)
H = zeros(inData.BatchSize, rnn.h, inData.TimeSteps,'gpuArray');
T = reshape(permute(inData.V,[1 3 2]),[],size(inData.V,2))*rnn.W_vh;
H(:,:,1) = tanh(bsxfun(#plus,rnn.h_init * rnn.W_hh,T(1:size(inData.V,1),:)));
for t = 2 : inData.TimeSteps
H(:,:,t) = tanh( H(:,:,(t-1))*rnn.W_hh + ...
T((t-1)*size(inData.V,1)+1: t*size(inData.V,1),:));
end
A = reshape(permute(H,[1 3 2]),[],size(H,2))*rnn.W_ho;
OX = permute(reshape(A,size(H,1),size(A,1)/size(H,1),[]),[1 3 2]);
return;
Benchmarking
Test Case #1
Parameters
rnn.v = 11;
rnn.h = 5;
rnn.o = 7;
inData.TimeSteps = 10000;
inData.BatchSize = 10;
Results
---- Original Code :
Elapsed time is 5.678876 seconds.
---- Modified Code :
Elapsed time is 3.821059 seconds.
Test Case #2
Parameters
inData.TimeSteps = 50000; (rest are same as in Test Case #1)
Results
---- Original Code :
Elapsed time is 28.392290 seconds.
---- Modified Code :
Elapsed time is 19.031776 seconds.
Please note that these are tested on GTX 750 Ti.

speeding up some for loops in matlab

Basically I am trying to solve a 2nd order differential equation with the forward euler method. I have some for loops inside my code, which take considerable time to solve and I would like to speed things up a bit. Does anyone have any suggestions how could I do this?
And also when looking at the time it takes, I notice that my end at line 14 takes 45 % of my total time. What is end actually doing and why is it taking so much time?
Here is my simplified code:
t = 0:0.01:100;
dt = t(2)-t(1);
B = 3.5 * t;
F0 = 2 * t;
BB=zeros(1,length(t)); % Preallocation
x = 2; % Initial value
u = 0; % Initial value
for ii = 1:length(t)
for kk = 1:ii
BB(ii) = BB(ii) + B(kk) * u(ii-kk+1)*dt; % This line takes the most time
end % This end takes 45% of the other time
x(ii+1) = x(ii) + dt*u(ii);
u(ii+1) = u(ii) + dt * (F0(ii) - BB(ii));
end
Running the code it takes me 8.552 sec.
You can remove the inner loop, I think:
for ii = 1:length(t)
for kk = 1:ii
BB(ii) = BB(ii) + B(kk) * u(ii-kk+1)*dt; % This line takes the most time
end % This end takes 45% of the other time
x(ii+1) = x(ii) + dt*u(ii);
u(ii+1) = u(ii) + dt * (F0(ii) - BB(ii));
end
So BB(ii) = BB(ii) (zero at initalisation) + sum for 1 to ii of BB(kk)* u(ii-kk+1).dt
but kk = 1:ii, so for a given ii, ii-kk+1 → ii-(1:ii) + 1 → ii:-1:1
So I think this is equivalent to:
for ii = 1:length(t)
BB(ii) = sum(B(1:ii).*u(ii:-1:1)*dt);
x(ii+1) = x(ii) + dt*u(ii);
u(ii+1) = u(ii) + dt * (F0(ii) - BB(ii));
end
It doesn't take as long as 8 seconds for me using either method, but the version with only one loop is about 2x as fast (the output of BB appears to be the same).
Is the sum loop of B(kk) * u(ii-kk+1) just conv(B(1:ii),u(1:ii),'same')
The best way to speed up loops in matlab is to try to avoid them. Try if you are able to perform a matrix operation instead of the inner loop. For example try to break the calculation you do there in small parts, then decide, if there are parts you can perform in advance without knowing the results of the next iteration of the loop.
to your secound part of the question, my guess:: The end contains the check if the loop runs for another round and this check by it self is not that long but called 50.015.001 times!

Resources