Here is my code:
class Klass
["thing", nil].each do |i|
instance_variable_set("##{i}reqs", {})
end
def initialize(var)
#reqs[var] = self
end
end
Klass.new("hello")
Which gives me the error:
in initialize': undefined method[]=' for nil:NilClass (NoMethodError)
I shouldn't be getting this error because the loop at the top should have initialized #reqs in it's second iteration. What is going on?
Instance variables belong to particular instances. That's why they are called instance variables.
In line 3, you set the instance variable called #reqs of the object Klass. In line 6, you access the instance variable called #reqs of an instance of the class Klass. Those are two completely different, distinct objects each with its own set of instance variables. Heck, those two objects don't even have the same class! (Klass's class is Class, whereas Klass.new's class is Klass.)
In line 6, #reqs is uninitialized, and uninitialized instance variables evaluate to nil.
There are many different ways to fix this, depending on your exact circumstances and requirements, the easiest way would be to initialize the instance variables in the initialize method, after all, that's what that method is there for:
class Klass
def initialize(var)
['thing', nil].each do |i|
instance_variable_set(:"##{i}reqs", {})
end
#reqs[var] = self
end
end
Klass.new('hello')
Remember, the problem was that the instance variables were initialized in one object, and accessed in another. This solution moves the initialization to the same object that was doing the reading.
However, the dual is also possible: move the reading to where the initialized variables are:
class Klass
['thing', nil].each do |i|
instance_variable_set(:"##{i}reqs", {})
end
def initialize(var)
self.class.instance_variable_get(:#reqs)[var] = self
end
end
Klass.new('hello')
This is kind of ugly, so let's add an attr_reader:
class Klass
['thing', nil].each do |i|
instance_variable_set(:"##{i}reqs", {})
end
class << self; attr_reader :reqs end
def initialize(var)
self.class.reqs[var] = self
end
end
Klass.new('hello')
Obviously, these two do very different things. It is unclear from your question which of the two you actually want.
A third possibility would be using class variables:
class Klass
['thing', nil].each do |i|
class_variable_set(:"###{i}reqs", {})
end
def initialize(var)
##reqs[var] = self
end
end
Klass.new('hello')
Note that this does yet another different thing. Again, whether you want that or not is not clear from your question.
The loop at the top is defining an instance variable for the Class, not for any object of the class.
So for the object, it doesn't exist.
From the looks of it, you want a hash common to the whole class where you store each created object in the hash. Assuming you don't have issues with class inheritance, you'd be better of with a class variable.
so...
class Klass
["thing",nil].each do |i|
class_variable_set("###{i}reqs", {})
end
def initialize(var)
##reqs[var] = self
end
end
Klass.new("hello")
If you define class like this:
class Klass
instance_variable_set(:#name, 'dog')
def self.name
#name
end
def name
#name
end
end
then
Klass.name # => 'dog'
instance = Klass.new
instance.name # => nil
Now you can see the difference. Your variable is defined on class level, not instance level.
Related
Sorry that I have no clue how to title this, I'm having a hard time looking this up because I don't know how to say this. Anyway...
Let's say I have a class that looks like this for example:
class Run
def self.starting
print "starting..."
end
def self.finished
print "Finished!"
end
end
All of the methods in Run have self before them, meaning that I don't have to do run = Run.new and I can just do Run.starting. Now let's say that I wanted to add some instance variables...
class Run
attr_accessor :starting, :finished
def self.starting
print "starting..."
#starting = true
#finished = false
end
def self.finished
print "finished!"
#starting = false
#finished = true
end
end
What if I wanted to access those instance variables from outside the class? I know that something like print "#{Run.finished}" or print "#{Run.starting}" won't do anything. Can I do that without run = Run.new? Or should I just remove self and then use run = Run.new? (Sorry if this question is a mess.)
All of the methods in Run have self before them, meaning that I don't have to do run = Run.new and I can just do Run.starting
There's much more to it than this. In your case you're calling class methods. If you did runner = Runner.new - then you'd be calling instance methods (those are defined without self.
In general, if you need "the thing" to hold some kind of state (like #running = true) then you'd rather want to instantiate an object, and call those methods.
Now, #whatever are instance variables, and you don't have the access to them in class methods.
class Run
attr_reader :running
def start
#running = true
end
def stop
#running = false
end
end
runner = Run.new
runner.running # nil
runner.start
runner.running # true
runner.stop
runner.running # false
I'd recommend you doing some tutorial or basic level book on rails programming, find a chapter about objects and classes. Do some exercises.
In Ruby instance variables are just lexical variables scoped to an instance of a class. Since they are scoped to the instance they always act like a private variable.
If you want to provide access to an instance variable from the outside you create setter and getter methods. Thats what attr_accessor does.
class Person
attr_accessor :name
def initialize(name:)
#name = name
end
def hello
"Hello my name is #{#name}"
end
end
john = Person.new(name: 'John')
john.name = "John Smith"
puts john.hello # "Hello my name is John Smith"
puts john.name # "John Smith"
Methods defined with def self.foo are class methods which are also referred to as singleton methods. You can't access variables belonging to an instance from inside a class method since the recipient when calling the method is the class itself and not an instance of the class.
Ruby also has class variables which are shared by a class and its subclasses:
class Person
##count = 0
def initialize
self.class.count += 1
end
def self.count
##count
end
def self.count=(value)
##count = value
end
end
class Student < Person
end
Person.new
Student.new
puts Person.count # 2 - wtf!
And class instance variables that are not shared with subclasses:
class Person
#count = 0 # sets an instance variable in the eigenclass
def initialize
self.class.count += 1
end
def self.count
#count
end
def self.count=(value)
#count = value
end
end
class Student < Person
#count = 0 # sets its own class instance variable
end
Person.new
Student.new
puts Person.count # 1
Class variables are not used as often and usually hold references to things like database connections or configuration which is shared by all instances of a class.
You can't access instance variables from outside the instance. That is the whole point of instance variables.
The only thing you can access from outside the instance are (public) methods.
However, you can create a public method that returns the instance variable. Such a method is called an attribute reader in Ruby, other languages may call it a getter. In Ruby, an attribute reader is typically named the same as the instance variable, but in your case that is not possible since there are already methods with the names starting and finished. Therefore, we have to find some other names for the attribute readers:
class Run
def self.starting?
#starting
end
def self.finished?
#finished
end
end
Since this is a common operation, there are helper methods which generate those methods for you, for example Module#attr_reader. However, they also assume that the name of the attribute reader method is the same as the name of the instance variable, so if you were to use this helper method, it would overwrite the methods you have already written!
class << Run
attr_reader :starting, :finished
end
When you do this, you will get warnings (you always have warning turned on when developing, do you?) telling you that you have overwritten your existing methods:
run.rb:19: warning: method redefined; discarding old starting
run.rb:2: warning: previous definition of starting was here
run.rb:19: warning: method redefined; discarding old finished
run.rb:5: warning: previous definition of finished was here
I want to create an empty array as a class instance variable in Ruby. However, my current method does not seem to work.
Here is my code:
class Something
#something = []
def dosomething
s = 5
#something << s
end
end
When I call the function, it gives me an undefined method traceback.
However, if I do something similar with class variables, i.e.:
class Something
##something = []
def dosomething
s = 5
##something << s
end
end
This works perfectly.
I know I can use the initialize method to actually create an empty list for #something, but is there another way of doing this without using the initialize method? And why does this work for class variables?
EDIT: Fixed typo
You need to use initialize as a constructor as below code and is there any reason why not to use initialize/constructor. And please fix a typo error in class definition Class Something to class Something no camel case or first letter capitalize while in class
class Something
def initialize
#something = Array.new
end
def dosomething
s = 5
#something << s
end
end
class variable ## are available to the whole class scope. so they are working in the code and if you want to use instance variable # you need to initialize it as above. The instance variable is share with instance/objects of a class
for more details visit the link Ruby initialize method
At first you have a typo. Change Classto class. Next I suggest to use the initialize method. While creating a new object this is the perfect place to initialize instance variables.
class Something
##my_class_variable = [1]
def initialize
#something = []
end
def dosomething
s = 5
#something << s
end
def self.get_my_class_variable
##my_class_variable
end
end
Your script will be read and executed from top to bottom and after this,
you can access the class Something. While the parser reads your script/class/module you can define class variables (##), execute mixins and extend the class with other modules. This is why you can define a class variable, but you can not define an instance variable. Because actually you have no instance object from your class. You only have a class object. In ruby everything is an object. And your class object has a defined class variable now:
Something.get_my_class_variable
# => [1]
Now you can create an instance from your class. With Something.new the initialize method will be invoked and your instance variable will be defined.
something = Something.new
something.dosomething
# => [5]
Later, if you are familar with this you can define getter and setter methods with attr_reader, attr_writer and attr_accessor for instance objects or cattr_reader, cattr_writer and cattr_accessor for class objects. For example:
class Something
attr_reader :my_something
def initialize
#my_something = []
end
def dosomething
s = 5
#my_something << s
end
end
something = Something.new
something.my_something
# => []
something.dosomething
# => [5]
something.my_something
# => [5]
Your problem in trying to access #something in your instance method is that, in the scope of instance methods, # variables refer to instance variables, and your #something is a class instance variable.
# variables are instance variables of the instance that is self when they are created. When #something was created, self was the class Something, not an instance of Something, which would be the case inside an instance method.
How then to access a class instance variable in an instance method? Like regular instance variables, this must be done via a method, as in attr_accessor. One way to do this is to use class << self to tell the Ruby interpreter that the enclosed code should be evaluated with the class (and not the instance) as self:
class C
#foo = 'hello'
class << self
attr_accessor :foo # this will be a class method
end
def test_foo # this is, of course, an instance method
puts self.class.foo # or puts C.foo
end
end
We can show that this works in irb:
2.3.0 :005 > C.foo
=> "hello"
2.3.0 :006 > C.new.test_foo
hello
You have correctly created a class instance variable, #something, and initialized it to an empty array. There are two ways for instances to obtain or change the value of that variable. One is to use the methods Object#instance_variable_get and Object#instance_variable_set (invoked on the class):
class Something
#something = []
def dosomething
s = 5
self.class.instance_variable_get(:#something) << s
end
end
sthg = Something.new
sthg.dosomething
Something.instance_variable_get(:#something)
#=> 5
The other way is to create an accessor for the variable. There are several ways to do that. My preference is the following:
Something.singleton_class.send(:attr_accessor, :something)
Something.something #=> [5]
In your dosomething method you would write:
self.class.something << s
I am very confused about this. In Programming Ruby book, it says,
"receiver checks for the method definition in its own class"
So class object stores all instance methods. Then why can't I call
instance method from within a class?
For example
Class ExampleClass
def example_method
end
example_method
end
I cannot call example_method inside ExampleClass.
However if I define a method in top level like this:
class ExampleClass
def example_method
end
end
def example_method1
end
example_method1
Then I can call top level method example_method1.
Isn't top level also a class? How come it is different than
a calling instance method from within ExampleClass?
The biggest reason that you cannot call that function in the way that you have written it is that it is, as you say, an instance method.
Try defining it in this way:
class ExampleClass
def self.class_method
puts "I'm a class method"
end
class_method
end
I believe you will find that you have a different result. It's not that it's "Top Level", it's whether or not it's in scope for what you're dealing with. Since you're dealing with a class, a class method would be necessary. If you're dealing with an object (an instantiated class) it's a different "scope".
Those "global" methods are an exception. They are defined as private instance methods of Object. Everything inherits from Object, so these methods are "globally" visible.
p self.class # => Object
p self.private_methods.sort # => [:Array, :Complex, ... :using, :warn] # all (?) from Kernel module
def aaaa
end
p self.private_methods.sort # => [:aaaa, :Array, ... :using, :warn]
The receiver checks for the method definition in its own class. The receiver is ExampleClass. The class of ExampleClass is Class. There is no example_method method in the Class class, ergo, you get a NoMethodError.
I'll try to explain it as follows.
class MyClass
def self.my_method
puts "Me, I'm a class method. Note that self = #{self}"
end
def my_method
puts "Me, I'm an instance method. Note that self = #{self}"
end
# I'm about to invoke :my_method on self. Which one will it be?"
# "That depends on what self is now, of course.
puts "self = #{self}"
# OK. It's MyClass. But wait. I'm just defining the set now.
# Do the methods I defined above even exist yet?
# Does the class exist yet? Let's find out.
print "class methods: "
puts self.methods(false)
print "instance methods: "
puts self.instance_methods(false)
# Cool! Let's try invoking my_method
my_method
# It worked. It was the class method because self = MyClass
# Now let's see if we can create an instance of the class before
# we finish defining the class. Surely we can't.
my_instance = new
puts "my_instance = #{my_instance}"
# We can! Now that's very interesting. Can we invoke the
# instance method on that instance?
my_instance.my_method
# Yes!
end
The following is printed while the class is being defined:
self = MyClass
class methods: my_method
instance methods: my_method
Me, I'm a class method. Note that self = MyClass
my_instance = #<MyClass:0x007fd6119125a0>
Me, I'm an instance method. Note that self = #<MyClass:0x007fd6119125a0>
Now let's confirm the methods can be invoked from outside the class. There should be no surprises here:
MyClass.my_method
#-> Me, I'm a class method. Note that self = MyClass
my_instance = MyClass.new
my_instance.my_method
#-> Me, I'm an instance method. Note that self = #<MyClass:0x007fd61181d668>
I would like to access a class' name in its superclass MySuperclass' self.inherited method. It works fine for concrete classes as defined by class Foo < MySuperclass; end but it fails when using anonymous classes. I tend to avoid creating (class-)constants in tests; I would like it to work with anonymous classes.
Given the following code:
class MySuperclass
def self.inherited(subclass)
super
# work with subclass' name
end
end
klass = Class.new(MySuperclass) do
def self.name
'FooBar'
end
end
klass#name will still be nil when MySuperclass.inherited is called as that will be before Class.new yields to its block and defines its methods.
I understand a class gets its name when it's assigned to a constant, but is there a way to set Class#name "early" without creating a constant?
I prepared a more verbose code example with failing tests to illustrate what's expected.
Probably #yield has taken place after the ::inherited is called, I saw the similar behaviour with class definition. However, you can avoid it by using ::klass singleton method instead of ::inherited callback.
def self.klass
#klass ||= (self.name || self.to_s).gsub(/Builder\z/, '')
end
I am trying to understand the benefit of being able to refer to an anonymous class by a name you have assigned to it after it has been created. I thought I might be able to move the conversation along by providing some code that you could look at and then tell us what you'd like to do differently:
class MySuperclass
def self.inherited(subclass)
# Create a class method for the subclass
subclass.instance_eval do
def sub_class() puts "sub_class here" end
end
# Create an instance method for the subclass
subclass.class_eval do
def sub_instance() puts "sub_instance here" end
end
end
end
klass = Class.new(MySuperclass) do
def self.name=(name)
#name = Object.const_set(name, self)
end
def self.name
#name
end
end
klass.sub_class #=> "sub_class here"
klass.new.sub_instance #=> "sub_instance here"
klass.name = 'Fido' #=> "Fido"
kn = klass.name #=> Fido
kn.sub_class #=> "sub_class here"
kn.new.sub_instance #=> "sub_instance here"
klass.name = 'Woof' #=> "Woof"
kn = klass.name #=> Fido (cannot change)
There is no way in pure Ruby to set a class name without assigning it to a constant.
If you're using MRI and want to write yourself a very small C extension, it would look something like this:
VALUE
force_class_name (VALUE klass, VALUE symbol_name)
{
rb_name_class(klass, SYM2ID(symbol_name));
return klass;
}
void
Init_my_extension ()
{
rb_define_method(rb_cClass, "force_class_name", force_class_name, 1);
}
This is a very heavy approach to the problem. Even if it works it won't be guaranteed to work across various versions of ruby, since it relies on the non-API C function rb_name_class. I'm also not sure what the behavior will be once Ruby gets around to running its own class-naming hooks afterward.
The code snippet for your use case would look like this:
require 'my_extension'
class MySuperclass
def self.inherited(subclass)
super
subclass.force_class_name(:FooBar)
# work with subclass' name
end
end
as the title says,
what is the difference between #var and ##var in a class definition?
Also, what is the difference between self.mymethod and mymethod in defining a method?
##var is a class variable, it is shared between class and all instances of this class. You can access this variable from class methods and from instance methods.
class C
##a = 1
def self.m1 # define class method (this is similar to def C.m1, because self will evaluate to C in this context)
##a
end
def m2 # define instance method
##a
end
end
C.m1 # => 1
C.new.m2 # => 1
#var is a class instance variable. Normally you can get access to this instance variable from the class methods.
class C
#a = 1
def self.m1
#a
end
def m2
# no direct access to #a because in this context #a will refer to regular instance variable, not instance variable of an object that represent class C
end
end
C.m1 # => 1
These variables might be confusing and you should always know the context where you define instance variable #... - it might be defined in the instance of an object that represent a class or might be an instance of regular object.
self always refers to the current object.Check the following Eg:-
class Test
def test
puts "At the instance level, self is #{self}"
end
def self.test
puts "At the class level, self is #{self}"
end
end
Test.test
#=> At the class level, self is Test
Test.new.test
#=> At the instance level, self is #<Test:0x28190>
object variables are so named because they have scope within, and are associated
to, the current object.an object variable, is then accessible from any other method inside that object.
Class variables are particularly useful for storing information relevant to all objects
of a certain class.
In intuitive terms, instance vars are used to keep track of the state of each object. On the other hand, class variables are used to keep track of the state of all instances of the class. E.g. you might use ##count to keep track of the number of this class' objects that have been instantiated, like so:
class User
##count = 0
attr_reader :name
def initialize(name)
##count += 1
#name = name
end
end
User.count gives you the number of users that have been instantiated so far.
user = User.new('Peter') increases User.count by one and user.name returns Peter.