Excessive partitioning (too many tasks) on Apache Spark/Cassandra cluster - performance

I'm running a simplistic application on Spark/Cassandra cluster. Since moving to a new environment (Spark 1.5 instead of 1.2 and minor Cassandra version upgrade too) substantial performance downgrade was observed (from 4 s. to 1-5 m. for same task and same amounts of data).
After initial investigation it seems, that for exactly same code from spark-driver's perspective, there are many more tasks generated (20+k, where it used to be up to 5) and logs on executor's end also reflect the same situation:
many sequential executions of the same query on different partitions:
...
CassandraTableScanRDD: Fetched 0 rows from x.y for partition 20324 in 0.138 s.
CassandraTableScanRDD: Fetched 0 rows from x.y for partition 20327 in 0.058 s.
CassandraTableScanRDD: Fetched 0 rows from x.y for partition 20329 in 0.053 s.
...
where it used to be a single one:
CassandraTableScanRDD: Fetched 905 rows from x.y for partition 0 in 2.992 s.
Since application code is the same, I wonder what could possibly have caused such a difference in partitioning behavior and what can be done to remediate that?
NB! Setup of both environments if different, configuration is not shared/inherited.
Thanks.

The new version of the Spark Cassandra Connector uses a System table inside of more modern Cassandra to estimate split size. This table is updated every (5 minutes currently) although the number of splits you are seeing is extremely large. The value read out of this table is divided by your split size.
If you are using C* less than 2.1.5 this table does not exist and the partitioning will need to be done manually.
https://github.com/datastax/spark-cassandra-connector/blob/master/doc/FAQ.md#what-does-inputsplitsize_in_mb-use-to-determine-size
You can manually pass in the number of splits via the ReadConf if you are continuing to see issues.

Related

Apache Pulsar Clickhouse Sink - does it have intervals between inserts?

Clickhouse allows high performance writes but only if they are done in bulk and with intervals (recommended is at least 1 second interval between inserts). In the documentation to JDBC connector for Clickhouse batchSize option exists but there is nothing about intervals between inserts and I didn't manage to find insertion logic in the code (I am not a Java guy though).
Does it mean there are no intervals and Pulsar simply does inserts as frequently as it can?
I know nothing about Pulsar.
recommended is at least 1 second interval between inserts
That recommendation is "one insert per second".
Nothing about 1 second to sleep.
This recommendation is too basic and very vague.
Every project is unique, has own environment and requirements.
In one project I insert 10mil. very wide rows per minute with RAID 10 with HDD disks.
In another project I do 1000 inserts with ~100 narrow rows each per second using In-memory parts with single NVME disk.

Why queries are getting progressively slower when using postgres with spring batch?

I'm running a job using Spring Batch 4.2.0 with postgres (11.2) as backend. It's all wrapped in a spring boot app. I've 5 steps and each runs using a simple partitioning strategy to divide data by id ranges and reads data into each partition (which are processed by separate threads). I've about 18M rows in the table, each step reads, changes few fields and writes back. Each step reads all 18M rows and writes back. The issue I'm facing is, the queries that run to pull data into each thread scans data by id range like,
select field_1, field_2, field_66 from table where id >= 1 and id < 10000.
In this case each thread processes 10_000 rows at a time. When there's no traffic the query takes less than a second to read all 10,000 rows. But when the job runs there's about 70 threads reading all that data in. It goes progressively slower to almost a minute and a half, any ideas where to start troubleshooting this?
I do see autovacuum running in the backgroun for almost the whole duration of job. It definitely has enough memory to hold all that data in memory (about 6GB max heap). Postgres has sufficient shared_buffers 2GB, max_wal_size 2GB but not sure if that in itself is sufficient. Another thing I see is loads of COMMIT queries hanging around when checking through pg_stat_activity. Usually as much as number of partitions. So, instead of 70 connections being used by 70 partitions there are 140 conections used up with 70 of them running COMMIT. As time progresses these COMMITs get progressively slower too.
You are probably hitting https://github.com/spring-projects/spring-batch/issues/3634.
This issue has been fixed and will be part of version 4.2.3 planned to be released this week.

Hive partition scenario and how it impacts performance

I want to ask regarding the hive partitions numbers and how they will impact performance.
let me reflect this on a real example;
I have am external table that is expecting to have around 500M rows per day from multiple sources, and it shall have 5 partition columns.
for one day, that resulted in 250 partitions and expecting to have 1 year retention that will get around 75K.. which i suppose it is a huge number as when i checked, hive can go to 10K but after that the performance is going to be bad.. (and some one told me that partitions should not exceed 1K per table).
Mainly the queries that will select from this table
50% of them shall use the exact order of partitions..
25% shall use only 1-3 partitions and not using the other 2.
25% only using 1st partition
So do you think even with 1 month retention this may work well? or only start date can be enough.. assuming normal distribution the other 4 columns ( let's say 500M/250 partitions, for which we shall have 2M row for each partition).
I would go with 3 partition columns, since that will a) exactly match ~50% of your query profiles, and b) substantially reduce (prune) the number of scanned partitions for the other 50%. At the same time, you won't be pressured to increase your Hive MetaStore (HMS) heap memory and beef up HMS backend database to work efficiently with 250 x 364 = 91,000 partitions.
Since the time a 10K limit was introduced, significant efforts have been made to improve partition-related operations in HMS. See for example JIRA HIVE-13884, that provides the motivation to keep that number low, and describes the way high numbers are being addressed:
The PartitionPruner requests either all partitions or partitions based
on filter expression. In either scenarios, if the number of partitions
accessed is large there can be significant memory pressure at the HMS
server end.
... PartitionPruner [can] first fetch the partition names (instead of
partition specs) and throw an exception if number of partitions
exceeds the configured value. Otherwise, fetch the partition specs.
Note that partition specs (mentioned above) and statistics gathered per partition (always recommended to have for efficient querying), is what constitutes the bulk of data HMS should store and cache for good performance.

Cassandra partition size and performance?

I was playing around with cassandra-stress tool on my own laptop (8 cores, 16GB) with Cassandra 2.2.3 installed out of the box with having its stock configuration. I was doing exactly what was described here:
http://www.datastax.com/dev/blog/improved-cassandra-2-1-stress-tool-benchmark-any-schema
And measuring its insert performance.
My observations were:
using the code from https://gist.github.com/tjake/fb166a659e8fe4c8d4a3 without any modifications I had ~7000 inserts/sec.
when modifying line 35 in the code above (cluster: fixed(1000)) to "cluster: fixed(100)", i. e. configuring my test data distribution to have 100 clustering keys instead of 1000, the performance was jumping up to ~11000 inserts/sec
when configuring it to have 5000 clustering keys per partition, the performance was reducing to just 700 inserts/sec
The documentation says however Cassandra can support up to 2 billion rows per partition. I don't need that much still I don't get how just 5000 records per partition can slow the writes 10 times down or am I missing something?
Supporting is a little different from "best performaning". You can have very wide partitions, but the rule-of-thumb is to try to keep them under 100mb for misc performance reasons. Some operations can be performed more efficiently when the entirety of the partition can be stored in memory.
As an example (this is old example, this is a complete non issue post 2.0 where everything is single pass) but in some versions when the size is >64mb compaction has a two pass process, that halves compaction throughput. It still worked with huge partitions. I've seen many multi gb ones that worked just fine. but the systems with huge partitions were difficult to work with operationally (managing compactions/repairs/gcs).
I would say target the rule of thumb initially of 100mb and test from there to find own optimal. Things will always behave differently based on use case, to get the most out of a node the best you can do is some benchmarks closest to what your gonna do (true of all systems). This seems like something your already doing so your definitely on the right path.

Correcting improper usage of Cassandra

I have a similar question that was unanswered (but had many comments):
How to make Cassandra fast
My setup:
Ubuntu Server
AWS service - Intel(R) Xeon(R) CPU E5-2680 v2 # 2.80GHz, 4GB Ram.
2 Nodes of Cassandra Datastax Community Edition: (2.1.3).
PHP 5.5.9. With datastax php-driver
I come from a MySQL database knowledge with very basic NoSQL hands on in terms of ElasticSearch (now called Elastic) and MongoDB in terms of Documents storage.
When I read how to use Cassandra, here are the bullets that I understood
It is distributed
You can have replicated rings to distribute data
You need to establish partition keys for maximum efficiency
Rethink your query rather than to use indices
Model according to queries and not data
Deletes are bad
You can only sort starting from the second key of your primary key set
Cassandra has "fast" write
I have a PHP Silex framework API that receive a batch json data and is inserted into 4 tables as a minimum, 6 at maximum (mainly due to different types of sort that I need).
At first I only had two nodes of Cassandra. I ran Apache Bench to test. Then I added a third node, and it barely shaved off a fraction of a second at higher batch size concurrency.
Concurrency Batch size avg. time (ms) - 2 Nodes avg. time (ms) - 3 Nodes
1 5 288 180
1 50 421 302
1 400 1 298 1 504
25 5 1 993 2 111
25 50 3 636 3 466
25 400 32 208 21 032
100 5 5 115 5 167
100 50 11 776 10 675
100 400 61 892 60 454
A batch size is the number of entries (to the 4-6 tables) it is making per call.
So batch of 5, means it is making 5x (4-6) table insert worth of data. At higher batch size / concurrency the application times out.
There are 5 columns in a table with relatively small size of data (mostly int with text being no more than approx 10 char long)
My keyspace is the following:
user_data | True | org.apache.cassandra.locator.SimpleStrategy | {"replication_factor":"1"}
My "main" question is: what did I do wrong? It seems to be this is relatively small data set of that considering that Cassandra was built on BigDataTable at very high write speed.
Do I add more nodes beyond 3 in order to speed up?
Do I change my replication factor and do Quorum / Read / Write and then hunt for a sweet spot from the datastax doc: http://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
Do I switch framework, go node.js for higher concurrency for example.
Do I rework my tables, as I have no good example as to how effectively use column family? I need some hint for this one.
For the table question:
I'm tracking history of a user. User has an event and is associated to a media id, and there so extra meta data too.
So columns are: event_type, user_id, time, media_id, extra_data.
I need to sort them differently therefore I made different tables for them (as I understood how Cassandra data modeling should work...I am perhaps wrong). Therefore I'm replicating the different data across various tables.
Help?
EDIT PART HERE
the application also has redis and mysql attached for other CRUD points of interest such as retrieving a user data and caching it for faster pull.
so far on avg with MySQL and then Redis activated, I have a 72ms after Redis kicks in, 180ms on MySQL pre-redis.
The first problem is you're trying to benchmark the whole system, without knowing what any individual component can do. Are you trying to see how fast an individual operation is? or how many operations per second you can do? They're different values.
I typically recommend you start by benchmarking Cassandra. Modern Cassandra can typically do 20-120k operations per second per server. With RF=3, that means somewhere between 5k and 40k reads / second or writes/second. Use cassandra-stress to make sure cassandra is doing what you expect, THEN try to loop in your application and see if it matches. If you slow way down, then you know the application is your bottleneck, and you can start thinking about various improvements (different driver, different language, async requests instead of sync, etc).
Right now, you're doing too much and analyzing too little. Break the problem into smaller pieces. Solve the individual pieces, then put the puzzle together.
Edit: Cassandra 2.1.3 is getting pretty old. It has some serious bugs. Use 2.1.11 or 2.2.3. If you're just starting development, 2.2.3 may be OK (and let's assume you'll actually go to production with 2.2.5 or so). If you're ready to go prod tomorrow, use 2.1.x instead.

Resources