How to solve equations using asymptotic notations? - algorithm

I'm stuck on whether or not the asymptotic notations (options 1-5) are correct or not.
The big-O notation rule I got (from a YouTube video) was that for O(f(n)) is the set of all functions with smaller or same order of grown as f(n), which means that option 2 would be correct because the leading term has the same order of grown as t(n).
The little-o notation rule I got was that for O(f(n)) is the set of all functions with smaller rate of grown than f(n), which means that option 1 is correct because the leading term n^3 is smaller than o(n^4).
How would I solve this problem for the rest (Omega, Theta, and little-Omega)? I have trouble finding the explanation or rule for those.
Given t(n) = 53n^3+ 32n^2+ 28, which of the following is(are) correct
1) t(n) = o(n^4) (Correct?)
2) t(n) = O(n^3) (Correct?)
3) t(n) = Ɵ(n^4)
4) t(n) = Ω(n^3) (Correct?)
5) t(n) = ɯ(n^2)

Your understanding of O and o is correct.
Roughly speaking, for Omega and omega, they are sort of the opposite. They are kind of bounds from below. So the growth of t(n) must be larger [larger or equal] than that of f(n) to be in omega(f(n)) [Omega(f(n)].
Theta is the same as O and Omega at the same time.
So 4 and 5 are correct and 3 is false.
The mathematically exact definitions are more involved see for example https://en.wikipedia.org/wiki/Big_O_notation

Given t(n) = 53n^3+ 32n^2+ 28, which of the following is(are) correct
1)t(n) = o(n^4)
==>Correct as n^4 is bigger by Function n.
2)t(n) = O(n^3) (Correct?)
==>correct :::take large C constant
3)t(n) = Ɵ(n^4)
==>false because Omega does not satisfy here.
4)t(n) = Ω(n^3)<br/>==> correct
5)t(n) = ɯ(n^2)
true as it is strictly smaller than n^3

Related

Clarification for Theta notation in complexity analysis. Θ(g)

When we talk about Θ(g) are we referring to the highest order term of g(n) or are we referring to g(n) exactly as it is?
For example if f(n) = n3. And g(n)=1000n3+n does Θ(g) mean Θ(1000n3+n) or Θ(n3)?
In this scenario can we say that f(n) is Θ(g)?
Θ(g) yields sets of functions that are all of the same complexity class. Θ(1000n3+n) is equal to Θ(n3) because both of these result in the same set.
For simplicity's sake one will usually drop the non-significant terms and multiplicative constants. The lower order additive terms don't change the complexity, nor do any multipliers, so there's no reason to write them out.
Since Θ(g) is a set, you would say that f(n) &in; Θ(g).
NB: Many CS teachers, textbooks, and other resources muddy the waters by using imprecise notation. Lots of people say that f(n)=n3 is O(n3), rather than f(n)=n3 is in O(n3). They use = when they mean &in;.
theta(g(n)) lies between O(g(n)) and omega(g(n))
if g(n) = 1000n^3 + n
first lets find O(g(n)) upper bound
It could be n^3, n^4, n^5 but we choose the closest one which is O(n^3).
O(n^3) is valid because we can find a constant c such that for some value of n
1000n^3 + n < c.n^3
second lets see omega(g(n)) which is lower bound
omega says f(n) > c.g(n)
we can find a constant c such that
1000.n^3 + n > c.n^3
Now we have upper bound which is O(n^3) and lower bound which is omega(n^3).
therefore we have theta which bounds both upper and lower using same function.
By rule : if f(n) = O(g(n)) and f(n) = omega(g(n)) therefore f(n) = theta(g(n))
1000.n^3 + n = theta(n^3)

Master Theorem confusion with the three cases

I know that we can apply the Master Theorem to find the running time of a divide and conquer algorithm, when the recurrence relation has the form of:
T(n) = a*T(n/b) + f(n)
We know the following :
a is the number of subproblems that the algorithm divides the original problem
b is the size of the sun-problem i.e n/b
and finally.. f(n) encompasses the cost of dividing the problem and combining the results of the subproblems.
Now we then find something (I will come back to the term "something")
and we have 3 cases to check.
The case that f(n) = O(n^log(b)a-ε) for some ε>0; Then T(n) is O(n*log(b)a)
The case that f(n) = O(n^log(b)a) ; Then T(n) is O(n^log(b)a * log n).
If n^log(b)a+ε = O(f(n)) for some constant ε > 0, and if a*f(n/b) =< cf(n) for some constant
c < 1 and almost all n, then T(n) = O(f(n)).
All fine, I am recalling the term something. How we can use general examples (i.e uses variables and not actual numbers) to decide which case the algorithm is in?
In instance. Consider the following:
T(n) = 8T(n/2) + n
So a = 8, b = 2 and f(n) = n
How I will proceed then? How can I decide which case is? While the function f(n) = some big-Oh notation how these two things are comparable?
The above is just an example to show you where I don't get it, so the question is in general.
Thanks
As CLRS suggests, the basic idea is comparing f(n) with n^log(b)a i.e. n to the power (log a to the base b). In your hypothetical example, we have:
f(n) = n
n^log(b)a = n^3, i.e. n-cubed as your recurrence yields 8 problems of half the size at every step.
Thus, in this case, n^log(b)a is larger because n^3 is always O(n) and the solution is: T(n) = θ(n^3).
Clearly, the number of subproblems vastly outpaces the work (linear, f(n) = n) you are doing for each subproblem. Thus, the intuition tells and master theorem verifies that it is the n^log(b)a that dominates the recurrence.
There is a subtle technicality where the master theorem says that f(n) should be not only smaller than n^log(b)a O-wise, it should be smaller polynomially.

Asymptotic Notations: (an + b) ∈ O(n^2)

I was reading Intro to Algorithms, by Thomas H. Corman when I encountered this statement (in Asymptotic Notations)
when a>0, any linear function an+b is in O(n^2) which is essentially verified by taking c = a + |b| and no = max(1, -b/a)
I can't understand why O(n^2) and not O(n). When will O(n) upper bound fail.
For example, for 3n+2, according to the book
3n+2 <= (5)n^2 n>=1
but this also holds good
3n+2 <= 5n n>=1
So why is the upper bound in terms of n^2?
Well I found the relevant part of the book. Indeed the excerpt comes from the chapter introducing big-O notation and relatives.
The formal definition of the big-O is that the function in question does not grow asymptotically faster than the comparison function. It does not say anything about whether the function grows asymptotically slower, so:
f(n) = n is in O(n), O(n^2) and also O(e^n) because n does not grow asymptotically faster than any of these. But n is not in O(1).
Any function in O(n) is also in O(n^2) and O(e^n).
If you want to describe the tight asymptotic bound, you would use the big-Θ notation, which is introduced just before the big-O notation in the book. f(n) ∊ Θ(g(n)) means that f(n) does not grow asymptotically faster than g(n) and the other way around. So f(n) ∊ Θ(g(n)) is equivalent to f(n) ∊ O(g(n)) and g(n) ∊ O(f(n)).
So f(n) = n is in Θ(n) but not in Θ(n^2) or Θ(e^n) or Θ(1).
Another example: f(n) = n^2 + 2 is in O(n^3) but not in Θ(n^3), it is in Θ(n^2).
You need to think of O(...) as a set (which is why the set theoretic "element-of"-symbol is used). O(g(n)) is the set of all functions that do not grow asymptotically faster than g(n), while Θ(g(n)) is the set of functions that neither grow asymptotically faster nor slower than g(n). So a logical consequence is that Θ(g(n)) is a subset of O(g(n)).
Often = is used instead of the ∊ symbol, which really is misleading. It is pure notation and does not share any properties with the actual =. For example 1 = O(1) and 2 = O(1), but not 1 = O(1) = 2. It would be better to avoid using = for the big-O notation. Nonetheless you will later see that the = notation is useful, for example if you want to express the complexity of rest terms, for example: f(n) = 2*n^3 + 1/2*n - sqrt(n) + 3 = 2*n^3 + O(n), meaning that asymptotically the function behaves like 2*n^3 and the neglected part does asymptotically not grow faster than n.
All of this is kind of against the typically usage of big-O notation. You often find the time/memory complexity of an algorithm defined by it, when really it should be defined by big-Θ notation. For example if you have an algorithm in O(n^2) and one in O(n), then the first one could actually still be asymptotically faster, because it might also be in Θ(1). The reason for this may sometimes be that a tight Θ-bound does not exist or is not known for given algorithm, so at least the big-O gives you a guarantee that things won't take longer than the given bound. By convention you always try to give the lowest known big-O bound, while this is not formally necessary.
The formal definition (from Wikipedia) of the big O notation says that:
f(x) = O(g(x)) as x → ∞
if and only if there is a positive constant M such that for all
sufficiently large values of x, f(x) is at most M multiplied by g(x)
in absolute value. That is, f(x) = O(g(x)) if and only if there exists
a positive real number M and a real number x0 such that
|f(x)|≤ M|g(x)| for all x > x₀ (mean for x big enough)
In our case, we can easily show that
|an + b| < |an + n| (for n sufficiently big, ie when n > b)
Then |an + b| < (a+1)|n|
Since a+1 is constant (corresponds to M in the formal definition), definitely
an + b = O(n)
Your were right to doubt.

complexity -big O notation , theta and omega

can anyone help me verifying the following complexities:
10^12 = O(1)?
2^(n+3) + log(n) = O(2^n)?
f(n) = Omega(n) and f(n) = theta(n) <=> f(n) = O(n)
thanks
The first two are right, the last is wrong.
In particular, any value that has no variable attached will be "a constant" and therefore O(1). As for why you're correct on the second, 2^n strictly beats log(n) asymptotically, and 2^(n+3) is equivalent to 8*2^n, or O(1)*O(2^n), and it's generally best to simplify big-O notation to the simplest-looking correct form.
The third condition is wrong because f(n) = O(n) does not imply either of the first two statements.

Difference between Big-Theta and Big O notation in simple language

While trying to understand the difference between Theta and O notation I came across the following statement :
The Theta-notation asymptotically bounds a function from above and below. When
we have only an asymptotic upper bound, we use O-notation.
But I do not understand this. The book explains it mathematically, but it's too complex and gets really boring to read when I am really not understanding.
Can anyone explain the difference between the two using simple, yet powerful examples.
Big O is giving only upper asymptotic bound, while big Theta is also giving a lower bound.
Everything that is Theta(f(n)) is also O(f(n)), but not the other way around.
T(n) is said to be Theta(f(n)), if it is both O(f(n)) and Omega(f(n))
For this reason big-Theta is more informative than big-O notation, so if we can say something is big-Theta, it's usually preferred. However, it is harder to prove something is big Theta, than to prove it is big-O.
For example, merge sort is both O(n*log(n)) and Theta(n*log(n)), but it is also O(n2), since n2 is asymptotically "bigger" than it. However, it is NOT Theta(n2), Since the algorithm is NOT Omega(n2).
Omega(n) is asymptotic lower bound. If T(n) is Omega(f(n)), it means that from a certain n0, there is a constant C1 such that T(n) >= C1 * f(n). Whereas big-O says there is a constant C2 such that T(n) <= C2 * f(n)).
All three (Omega, O, Theta) give only asymptotic information ("for large input"):
Big O gives upper bound
Big Omega gives lower bound and
Big Theta gives both lower and upper bounds
Note that this notation is not related to the best, worst and average cases analysis of algorithms. Each one of these can be applied to each analysis.
I will just quote from Knuth's TAOCP Volume 1 - page 110 (I have the Indian edition). I recommend reading pages 107-110 (section 1.2.11 Asymptotic representations)
People often confuse O-notation by assuming that it gives an exact order of Growth; they use it as if it specifies a lower bound as well as an upper bound. For example, an algorithm might be called inefficient because its running time is O(n^2). But a running time of O(n^2) does not necessarily mean that running time is not also O(n)
On page 107,
1^2 + 2^2 + 3^2 + ... + n^2 = O(n^4) and
1^2 + 2^2 + 3^2 + ... + n^2 = O(n^3) and
1^2 + 2^2 + 3^2 + ... + n^2 = (1/3) n^3 + O(n^2)
Big-Oh is for approximations. It allows you to replace ~ with an equals = sign. In the example above, for very large n, we can be sure that the quantity will stay below n^4 and n^3 and (1/3)n^3 + n^2 [and not simply n^2]
Big Omega is for lower bounds - An algorithm with Omega(n^2) will not be as efficient as one with O(N logN) for large N. However, we do not know at what values of N (in that sense we know approximately)
Big Theta is for exact order of Growth, both lower and upper bound.
I am going to use an example to illustrate the difference.
Let the function f(n) be defined as
if n is odd f(n) = n^3
if n is even f(n) = n^2
From CLRS
A function f(n) belongs to the set Θ(g(n)) if there exist positive
constants c1 and c2 such that it can be "sandwiched" between c1g(n)
and c2g(n), for sufficiently large n.
AND
O(g(n)) = {f(n): there exist positive constants c and n0 such that 0 ≤
f(n) ≤ cg(n) for all n ≥ n0}.
AND
Ω(g(n)) = {f(n): there exist positive constants c and n0 such that 0 ≤
cg(n) ≤ f(n) for all n ≥ n0}.
The upper bound on f(n) is n^3. So our function f(n) is clearly O(n^3).
But is it Θ(n^3)?
For f(n) to be in Θ(n^3) it has to be sandwiched between two functions one forming the lower bound, and the other the upper bound, both of which grown at n^3. While the upper bound is obvious, the lower bound can not be n^3. The lower bound is in fact n^2; f(n) is Ω(n^2)
From CLRS
For any two functions f(n) and g(n), we have f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and f(n) = Ω(g(n)).
Hence f(n) is not in Θ(n^3) while it is in O(n^3) and Ω(n^2)
If the running time is expressed in big-O notation, you know that the running time will not be slower than the given expression. It expresses the worst-case scenario.
But with Theta notation you also known that it will not be faster. That is, there is no best-case scenario where the algorithm will retun faster.
This gives are more exact bound on the expected running time. However for most purposes it is simpler to ignore the lower bound (the possibility of faster execution), while you are generally only concerned about the worst-case scenario.
Here's my attempt:
A function, f(n) is O(n), if and only if there exists a constant, c, such that f(n) <= c*g(n).
Using this definition, could we say that the function f(2^(n+1)) is O(2^n)?
In other words, does a constant 'c' exist such that 2^(n+1) <= c*(2^n)? Note the second function (2^n) is the function after the Big O in the above problem. This confused me at first.
So, then use your basic algebra skills to simplify that equation. 2^(n+1) breaks down to 2 * 2^n. Doing so, we're left with:
2 * 2^n <= c(2^n)
Now its easy, the equation holds for any value of c where c >= 2. So, yes, we can say that f(2^(n+1)) is O(2^n).
Big Omega works the same way, except it evaluates f(n) >= c*g(n) for some constant 'c'.
So, simplifying the above functions the same way, we're left with (note the >= now):
2 * 2^n >= c(2^n)
So, the equation works for the range 0 <= c <= 2. So, we can say that f(2^(n+1)) is Big Omega of (2^n).
Now, since BOTH of those hold, we can say the function is Big Theta (2^n). If one of them wouldn't work for a constant of 'c', then its not Big Theta.
The above example was taken from the Algorithm Design Manual by Skiena, which is a fantastic book.
Hope that helps. This really is a hard concept to simplify. Don't get hung up so much on what 'c' is, just break it down into simpler terms and use your basic algebra skills.

Resources