Big O for recursion function - algorithm

I know that when you split the size of the problem set into a specified fraction you're dealing with O(log(n)). However I am confused when they're more then 1 recursive calls that do this. For example in this function over here we're going to calculate the value of an exponent.
public static long pow(long x, int n)
{
if(n==1)
return x;
if(isEven(n))
return pow(x,n/2) * pow(x,n/2);
else
return pow(x*x, n/2) * x
}
After doing the analysis, I got the run time equals O(N). Am I correct? Thanks for your time

Yes, you are correct, at least under worst case analysis.
Note that for n = 2^k, for some natural k, you get that except when reaching the stop clause, the condition is always true, and the recursive function will be ran twice.
When that is established, it is enough to analyze:
T(n) = T(n/2) + T(n/2) + X
Where X is some constant, (each recursive call takes constant amount of work, if ignoring the other recursive calls).
From master theorem case 1, with:
f(n) = X
a = 2, b = 2, c = 0 (since X is in O(n^0)=O(1))
And since c=0 < 1 = log_2(2), conditions for case 1 apply, and we can conclude the function T(n) is in Theta(n^log_2(2)) = Theta(n)
Average case analysis:
For average case, with uniformly distributed number n, half of the bits in the binary representation of this number will be up (1), and half will be 'down' (0).
Since dividing by 2 is basically arithmetic shift right, and the condition isEven(n) is true if and only if the least significant bit is 0, this means the mean complexity function is:
T(n) = 0.5 T(n/2) + 0.5 * 2 T(n/2) + X = 0.5 * 3 * T(n/2) + X
= 1.5 * T(n/2) + X
So
T(n) = 3/2 T(n/2) + X
Case 1 still applies (assuming constant X):
a = 3/2, b=2, c = 0
and you get average case complexity of Theta(n^log_1.5(2))~=Theta(n^0.58)
Quick Note:
This assumes indeed all arithmetics are O(1). If this is not the case (very large numbers), you should put their complexity instead of the constant in the definition of T(n), and reanalyze. Assuming each such operation is sub-linear (in the number, not the bits representing it), the result remains Theta(n), since case 1 of master theorem still applies. (For average case, for any function "better" than ~O(n^0.58) won't change the result shown

Varun, you are partly correct. Let's see the two cases:
If n is even, then you are just dividing the task into two halves without optimizing significantly, since pow(x, n/2) is calculated twice.
If n is odd, then you have a special case of decomposition. x will be replaced by xx, which makes xx the new base, which saves you from recalculating x*x.
In the first case we have a slight optimization, since it is easier to repeat smaller productions than doing the whole thing, as:
(3 * 3 * 3 * 3) * (3 * 3 * 3 * 3) is easier to be calculated than (3 * 3 * 3 * 3 * 3 * 3 * 3 * 3), so the first case slightly improves the calculation by using the fact that production is an associative operation. The number of production executed in the first case is not reduced, but the way the computation is done is better.
In the second case, however, you have significant optimizations. Let's suppose that n = (2^p) - 1. In that case, we reduce the problem to a problem, where n = ((2^p - 1) - 1) / 2 = ((2^p) - 2) / 2 = (2^(p-1)) - 1. So, if p is a natural number and n = (2^p) - 1, then you are reducing it to its half. So, the algorithm is logarithmic in best case scenario n = (2^p) - 1 and it is linear in worst case scenario n = 2^p.

We usually analyze worst case time complexity, which happens when isEven(n) is true. In that case, we have
T(n) = 2T(n/2) + O(1)
where T(n) means the time complexity of pow(x, n).
Apply Master theorem, Case 1 to get the Big-O notation form of T(n). That is:
T(n) = O(n)
 

Related

is the following way correct for determines the complexity of Fibonacci function? [duplicate]

I understand Big-O notation, but I don't know how to calculate it for many functions. In particular, I've been trying to figure out the computational complexity of the naive version of the Fibonacci sequence:
int Fibonacci(int n)
{
if (n <= 1)
return n;
else
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
What is the computational complexity of the Fibonacci sequence and how is it calculated?
You model the time function to calculate Fib(n) as sum of time to calculate Fib(n-1) plus the time to calculate Fib(n-2) plus the time to add them together (O(1)). This is assuming that repeated evaluations of the same Fib(n) take the same time - i.e. no memoization is used.
T(n<=1) = O(1)
T(n) = T(n-1) + T(n-2) + O(1)
You solve this recurrence relation (using generating functions, for instance) and you'll end up with the answer.
Alternatively, you can draw the recursion tree, which will have depth n and intuitively figure out that this function is asymptotically O(2n). You can then prove your conjecture by induction.
Base: n = 1 is obvious
Assume T(n-1) = O(2n-1), therefore
T(n) = T(n-1) + T(n-2) + O(1) which is equal to
T(n) = O(2n-1) + O(2n-2) + O(1) = O(2n)
However, as noted in a comment, this is not the tight bound. An interesting fact about this function is that the T(n) is asymptotically the same as the value of Fib(n) since both are defined as
f(n) = f(n-1) + f(n-2).
The leaves of the recursion tree will always return 1. The value of Fib(n) is sum of all values returned by the leaves in the recursion tree which is equal to the count of leaves. Since each leaf will take O(1) to compute, T(n) is equal to Fib(n) x O(1). Consequently, the tight bound for this function is the Fibonacci sequence itself (~θ(1.6n)). You can find out this tight bound by using generating functions as I'd mentioned above.
Just ask yourself how many statements need to execute for F(n) to complete.
For F(1), the answer is 1 (the first part of the conditional).
For F(n), the answer is F(n-1) + F(n-2).
So what function satisfies these rules? Try an (a > 1):
an == a(n-1) + a(n-2)
Divide through by a(n-2):
a2 == a + 1
Solve for a and you get (1+sqrt(5))/2 = 1.6180339887, otherwise known as the golden ratio.
So it takes exponential time.
I agree with pgaur and rickerbh, recursive-fibonacci's complexity is O(2^n).
I came to the same conclusion by a rather simplistic but I believe still valid reasoning.
First, it's all about figuring out how many times recursive fibonacci function ( F() from now on ) gets called when calculating the Nth fibonacci number. If it gets called once per number in the sequence 0 to n, then we have O(n), if it gets called n times for each number, then we get O(n*n), or O(n^2), and so on.
So, when F() is called for a number n, the number of times F() is called for a given number between 0 and n-1 grows as we approach 0.
As a first impression, it seems to me that if we put it in a visual way, drawing a unit per time F() is called for a given number, wet get a sort of pyramid shape (that is, if we center units horizontally). Something like this:
n *
n-1 **
n-2 ****
...
2 ***********
1 ******************
0 ***************************
Now, the question is, how fast is the base of this pyramid enlarging as n grows?
Let's take a real case, for instance F(6)
F(6) * <-- only once
F(5) * <-- only once too
F(4) **
F(3) ****
F(2) ********
F(1) **************** <-- 16
F(0) ******************************** <-- 32
We see F(0) gets called 32 times, which is 2^5, which for this sample case is 2^(n-1).
Now, we want to know how many times F(x) gets called at all, and we can see the number of times F(0) is called is only a part of that.
If we mentally move all the *'s from F(6) to F(2) lines into F(1) line, we see that F(1) and F(0) lines are now equal in length. Which means, total times F() gets called when n=6 is 2x32=64=2^6.
Now, in terms of complexity:
O( F(6) ) = O(2^6)
O( F(n) ) = O(2^n)
There's a very nice discussion of this specific problem over at MIT. On page 5, they make the point that, if you assume that an addition takes one computational unit, the time required to compute Fib(N) is very closely related to the result of Fib(N).
As a result, you can skip directly to the very close approximation of the Fibonacci series:
Fib(N) = (1/sqrt(5)) * 1.618^(N+1) (approximately)
and say, therefore, that the worst case performance of the naive algorithm is
O((1/sqrt(5)) * 1.618^(N+1)) = O(1.618^(N+1))
PS: There is a discussion of the closed form expression of the Nth Fibonacci number over at Wikipedia if you'd like more information.
You can expand it and have a visulization
T(n) = T(n-1) + T(n-2) <
T(n-1) + T(n-1)
= 2*T(n-1)
= 2*2*T(n-2)
= 2*2*2*T(n-3)
....
= 2^i*T(n-i)
...
==> O(2^n)
Recursive algorithm's time complexity can be better estimated by drawing recursion tree, In this case the recurrence relation for drawing recursion tree would be T(n)=T(n-1)+T(n-2)+O(1)
note that each step takes O(1) meaning constant time,since it does only one comparison to check value of n in if block.Recursion tree would look like
n
(n-1) (n-2)
(n-2)(n-3) (n-3)(n-4) ...so on
Here lets say each level of above tree is denoted by i
hence,
i
0 n
1 (n-1) (n-2)
2 (n-2) (n-3) (n-3) (n-4)
3 (n-3)(n-4) (n-4)(n-5) (n-4)(n-5) (n-5)(n-6)
lets say at particular value of i, the tree ends, that case would be when n-i=1, hence i=n-1, meaning that the height of the tree is n-1.
Now lets see how much work is done for each of n layers in tree.Note that each step takes O(1) time as stated in recurrence relation.
2^0=1 n
2^1=2 (n-1) (n-2)
2^2=4 (n-2) (n-3) (n-3) (n-4)
2^3=8 (n-3)(n-4) (n-4)(n-5) (n-4)(n-5) (n-5)(n-6) ..so on
2^i for ith level
since i=n-1 is height of the tree work done at each level will be
i work
1 2^1
2 2^2
3 2^3..so on
Hence total work done will sum of work done at each level, hence it will be 2^0+2^1+2^2+2^3...+2^(n-1) since i=n-1.
By geometric series this sum is 2^n, Hence total time complexity here is O(2^n)
The proof answers are good, but I always have to do a few iterations by hand to really convince myself. So I drew out a small calling tree on my whiteboard, and started counting the nodes. I split my counts out into total nodes, leaf nodes, and interior nodes. Here's what I got:
IN | OUT | TOT | LEAF | INT
1 | 1 | 1 | 1 | 0
2 | 1 | 1 | 1 | 0
3 | 2 | 3 | 2 | 1
4 | 3 | 5 | 3 | 2
5 | 5 | 9 | 5 | 4
6 | 8 | 15 | 8 | 7
7 | 13 | 25 | 13 | 12
8 | 21 | 41 | 21 | 20
9 | 34 | 67 | 34 | 33
10 | 55 | 109 | 55 | 54
What immediately leaps out is that the number of leaf nodes is fib(n). What took a few more iterations to notice is that the number of interior nodes is fib(n) - 1. Therefore the total number of nodes is 2 * fib(n) - 1.
Since you drop the coefficients when classifying computational complexity, the final answer is θ(fib(n)).
It is bounded on the lower end by 2^(n/2) and on the upper end by 2^n (as noted in other comments). And an interesting fact of that recursive implementation is that it has a tight asymptotic bound of Fib(n) itself. These facts can be summarized:
T(n) = Ω(2^(n/2)) (lower bound)
T(n) = O(2^n) (upper bound)
T(n) = Θ(Fib(n)) (tight bound)
The tight bound can be reduced further using its closed form if you like.
It is simple to calculate by diagramming function calls. Simply add the function calls for each value of n and look at how the number grows.
The Big O is O(Z^n) where Z is the golden ratio or about 1.62.
Both the Leonardo numbers and the Fibonacci numbers approach this ratio as we increase n.
Unlike other Big O questions there is no variability in the input and both the algorithm and implementation of the algorithm are clearly defined.
There is no need for a bunch of complex math. Simply diagram out the function calls below and fit a function to the numbers.
Or if you are familiar with the golden ratio you will recognize it as such.
This answer is more correct than the accepted answer which claims that it will approach f(n) = 2^n. It never will. It will approach f(n) = golden_ratio^n.
2 (2 -> 1, 0)
4 (3 -> 2, 1) (2 -> 1, 0)
8 (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
14 (5 -> 4, 3) (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
(3 -> 2, 1) (2 -> 1, 0)
22 (6 -> 5, 4)
(5 -> 4, 3) (4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
(3 -> 2, 1) (2 -> 1, 0)
(4 -> 3, 2) (3 -> 2, 1) (2 -> 1, 0)
(2 -> 1, 0)
The naive recursion version of Fibonacci is exponential by design due to repetition in the computation:
At the root you are computing:
F(n) depends on F(n-1) and F(n-2)
F(n-1) depends on F(n-2) again and F(n-3)
F(n-2) depends on F(n-3) again and F(n-4)
then you are having at each level 2 recursive calls that are wasting a lot of data in the calculation, the time function will look like this:
T(n) = T(n-1) + T(n-2) + C, with C constant
T(n-1) = T(n-2) + T(n-3) > T(n-2) then
T(n) > 2*T(n-2)
...
T(n) > 2^(n/2) * T(1) = O(2^(n/2))
This is just a lower bound that for the purpose of your analysis should be enough but the real time function is a factor of a constant by the same Fibonacci formula and the closed form is known to be exponential of the golden ratio.
In addition, you can find optimized versions of Fibonacci using dynamic programming like this:
static int fib(int n)
{
/* memory */
int f[] = new int[n+1];
int i;
/* Init */
f[0] = 0;
f[1] = 1;
/* Fill */
for (i = 2; i <= n; i++)
{
f[i] = f[i-1] + f[i-2];
}
return f[n];
}
That is optimized and do only n steps but is also exponential.
Cost functions are defined from Input size to the number of steps to solve the problem. When you see the dynamic version of Fibonacci (n steps to compute the table) or the easiest algorithm to know if a number is prime (sqrt(n) to analyze the valid divisors of the number). you may think that these algorithms are O(n) or O(sqrt(n)) but this is simply not true for the following reason:
The input to your algorithm is a number: n, using the binary notation the input size for an integer n is log2(n) then doing a variable change of
m = log2(n) // your real input size
let find out the number of steps as a function of the input size
m = log2(n)
2^m = 2^log2(n) = n
then the cost of your algorithm as a function of the input size is:
T(m) = n steps = 2^m steps
and this is why the cost is an exponential.
Well, according to me to it is O(2^n) as in this function only recursion is taking the considerable time (divide and conquer). We see that, the above function will continue in a tree until the leaves are approaches when we reach to the level F(n-(n-1)) i.e. F(1). So, here when we jot down the time complexity encountered at each depth of tree, the summation series is:
1+2+4+.......(n-1)
= 1((2^n)-1)/(2-1)
=2^n -1
that is order of 2^n [ O(2^n) ].
No answer emphasizes probably the fastest and most memory efficient way to calculate the sequence. There is a closed form exact expression for the Fibonacci sequence. It can be found by using generating functions or by using linear algebra as I will now do.
Let f_1,f_2, ... be the Fibonacci sequence with f_1 = f_2 = 1. Now consider a sequence of two dimensional vectors
f_1 , f_2 , f_3 , ...
f_2 , f_3 , f_4 , ...
Observe that the next element v_{n+1} in the vector sequence is M.v_{n} where M is a 2x2 matrix given by
M = [0 1]
[1 1]
due to f_{n+1} = f_{n+1} and f_{n+2} = f_{n} + f_{n+1}
M is diagonalizable over complex numbers (in fact diagonalizable over the reals as well, but this is not usually the case). There are two distinct eigenvectors of M given by
1 1
x_1 x_2
where x_1 = (1+sqrt(5))/2 and x_2 = (1-sqrt(5))/2 are the distinct solutions to the polynomial equation x*x-x-1 = 0. The corresponding eigenvalues are x_1 and x_2. Think of M as a linear transformation and change your basis to see that it is equivalent to
D = [x_1 0]
[0 x_2]
In order to find f_n find v_n and look at the first coordinate. To find v_n apply M n-1 times to v_1. But applying M n-1 times is easy, just think of it as D. Then using linearity one can find
f_n = 1/sqrt(5)*(x_1^n-x_2^n)
Since the norm of x_2 is smaller than 1, the corresponding term vanishes as n tends to infinity; therefore, obtaining the greatest integer smaller than (x_1^n)/sqrt(5) is enough to find the answer exactly. By making use of the trick of repeatedly squaring, this can be done using only O(log_2(n)) multiplication (and addition) operations. Memory complexity is even more impressive because it can be implemented in a way that you always need to hold at most 1 number in memory whose value is smaller than the answer. However, since this number is not a natural number, memory complexity here changes depending on whether if you use fixed bits to represent each number (hence do calculations with error)(O(1) memory complexity this case) or use a better model like Turing machines, in which case some more analysis is needed.

Can't calculate growth rate of function

Hello, I am trying to solve a question in above image, but I can't.
Specially, my question is about C(n) in the image, I got "7logn + n^(1/3)" at the end.
we know that left side of + sign, "7logn<=n for all n>7 (witness c=1, k=7)", and right side of + sign, "n^(1/3)<=n".
Both sides between + sign from my perspective is O(n) and thus whole C(n) is O(n).
But why the answer is Big-theta(n^1/3)?
It is only true if log is the logarithm of base 2 (then log(8) = 3, because 2^3 = 8).
8^(log(n)/9) = (8^log(n))^(1/9) = (n^log(8))^(1/9) = (n^3)^(1/9) = n^(3 * 1/9) = n^(1/3)
n^(1/3) is the same as the 3rd root of n.
It is O(n^(1/3)) and not O(log(n)) because the former term is growing faster:
Limit of n towards infinity of log(n) / (n^(1/3)) equals 0. If you would have to switch the expressions to get 0 then the other one would be growing faster. E.g. n + log(n) would be O(n) because n is growing faster, not to be confused with n * log(n) which is O(n * log(n)).

Will master theorem be applicable if the base case is not running in constant runtime but in polynomial runtime?

This is my recursive function:
function abc(n):
if n == 0
return xyz(n)
for i = 1 to n
print(xyz(n))
return abc(n/2) + abc(n/2)
and xyz() is ϴ(n^3). Will the Master theorem will be valid here? If, yes How will I write it?
The master theorem concerns recurrence relations of this form:
T(n) = a * T(n/b) + f(n)
T being the recursive procedure, a the number of subproblems into which we divide the input n, n/b the size of each subproblem and `f(n) the cost for the division of the input into subproblems and the combination of the results.
If n == 0 then n/b becomes 0, and so does a. This leaves us with:
T(0) = 0 + f(0)
Since there's no more recursion, it basically comes down to f(0). In your hypothetical case this has a complexity ϴ(n^3).
Since f(n) is the cost for the division of n into a subproblems and the combination of results, f(0) would normally have a cost of 0 or a constant. If function f(n) has a complexity of ϴ(n^3), then actually for n == 0 this still leads to a cost of 0 with regards to input size.
The master theorem provides information on the asymptotic bound for T(n), depending on the complexity of f(n), a and b. This depends on how the complexity of f(n) can be expressed using a form that employs logb(a)(log with base b of a). The log of 0 is undefined with b > 0.
What it comes down to is that it makes no sense to ask whether the master theorem holds for some specific input. Moreover, the master theorem holds anyway, it just states that depending on f(n) you can make some claims about the complexity of T or not. This depends on a and b, so without that information it is senseless to ask. If your f(n) has O(n^3) outside of the base case as well (n > 0) then you could make claims about T depending on how that 3 relates to a and b. For example, if 3 < logb(a) you'd be sure that T is ϴ(n^(logb(a)).
Suppose that the a in your algorithm is 2^n, then the master theorem could no longer be used to say anything about T's complexity.
EDIT
After your question edit, the form of your recursive procedure has become this:
T(n) = 2 * T(n/2) + f(n)
So a == 2 and b == 2 are the parameters in your case, since you divide the input into two subproblems which each get an input that's half of the input doing the recursion. The combination of the two recursive calls is constant (a simple addition abc(n/2) + abc(n/2)) and the division of the problems is trivial too, but this part in your case could simulate a ϴ(n^4) algorithm for dividing the input into subproblems:
for i = 1 to n
print(xyz(n))
Note that it's ϴ(n^4) because you stated xyz(n) is ϴ(n^3) and you repeat it n times in the loop. So your f(n) = ϴ(n^4).
The master theorem can't really state anything about this. However, if f(n) = Ω(n^4) (note the omega here), then 4 > log2(2) (the logb(a) with b = 2 and a = 2 in your case). In order to make a statement about T's complexity, another condition must now hold, the regularity condition. It states that a * f(n/b) <= k * f(n) must be true for some k < 1 and sufficiently large n.
So that gives us 2 * f(n/2) <= k * f(n). This is true for k < 1/8. This, finally, lets us state that T = ϴ(f(n)), so T = ϴ(n^4).
Meaning that final part is true if your f(n) (the loop with the xyz call) can be proven to be Ω(n^4) (again, note the omega instead of theta). Since omega is the lower bound, and your f(n) = ϴ(n^4), that should be true.

Algorithm Analysis: Big-O explanation

I'm currently taking a class in algorithms. The following is a question I got wrong from a quiz: Basically, we have to indicate the worst case running time in Big O notation:
int foo(int n)
{
m = 0;
while (n >=2)
{
n = n/4;
m = m + 1;
}
return m;
}
I don't understand how the worst case time for this just isn't O(n). Would appreciate an explanation. Thanks.
foo calculates log4(n) by dividing n by 4 and counting number of 4's in n using m as a counter. At the end, m is going to be the number of 4's in n. So it is linear in the final value of m, which is equal to log base 4 of n. The algorithm is then O(logn), which is also O(n).
Let's suppose that the worst case is O(n). That implies that the function takes at least n steps.
Now let's see the loop, n is being divided by 4 (or 2²) at each step. So, in the first iteration n is reduced to n/4, in the second, to n/8. It isn't being reduced linearly. It's being reduced by a power of two so, in the worst case, it's running time is O(log n).
The computation can be expressed as a recurrence formula:
f(r) = 4*f(r+1)
The solution is
f(r) = k * 4 ^(1-r)
Where ^ means exponent. In our case we can say f(0) = n
So f(r) = n * 4^(-r)
Solving for r on the end condition we have: 2 = n * 4^(-r)
Using log in both sides, log(2) = log(n) - r* log(4) we can see
r = P * log(n);
Not having more branches or inner loops, and assuming division and addition are O(1) we can confidently say the algorithm, runs P * log(n) steps therefore is a O((log(n)).
http://www.wolframalpha.com/input/?i=f%28r%2B1%29+%3D+f%28r%29%2F4%2C+f%280%29+%3D+n
Nitpickers corner: A C int usually means the largest value is 2^32 - 1 so in practice it means only max 15 iterations, which is of course O(1). But I think your teacher really means O(log(n)).

Proving this recursive Fibonacci implementation runs in time O(2^n)?

I'm having difficulty proving that the 'bad' version of fibonacci is O(2^n).
Ie.
Given the function
int fib(int x)
{
if ( x == 1 || x == 2 )
{
return 1;
}
else
{
return ( f( x - 1 ) + f( x - 2) );
}
}
Can I get help for the proof of this being O(2^n).
Let's start off by writing a recurrence relation for the runtime:
T(1) = 1
T(2) = 1
T(n+2) = T(n) + T(n + 1) + 1
Now, let's take a guess that
T(n) ≤ 2n
If we try to prove this by induction, the base cases check out:
T(1) = 1 ≤ 2 = 21
T(2) = 1 ≤ 4 = 22
Then, in the inductive step, we see this:
T(n + 2) = T(n) + T(n + 1) + 1
≤ 2n + 2n+1 + 1
< 2n+1 + 2n+1
= 2n+2
Therefore, by induction, we can conclude that T(n) ≤ 2n for any n, and therefore T(n) = O(2n).
With a more precise analysis, you can prove that T(n) = 2Fn - 1, where Fn is the nth Fibonacci number. This proves, more accurately, that T(n) = Θ(φn), where φ is the Golden Ratio, which is approximately 1.61. Note that φn = o(2n) (using little-o notation), so this is a much better bound.
Hope this helps!
Try manually doing a few test cases like f(5) and take note of how many times the method f() is called.
A fat hint would be to notice that every time the method f() is called (except for x is 1 or 2), f() is called twice. Each of those call f() two more times each, and so on...
There's actually a pretty simple proof that the total number of calls to the f is going to be 2Fib(n)-1, where Fib(n) is the n'th Fibonacci number. It goes like this:
The set of calls to f form a binary tree, where each call is either a leaf (for x=1 or x=2) or else the call spawns two child calls (for x>2).
Each leaf contributes exactly 1 to the total returned by the original call, therefore there are Fib(n) total leaves.
The total number of internal nodes in any binary tree is equal to L-1, where L is the number of leaves, so the total number of nodes in this tree is 2L-1.
This shows that the running time (measured in terms of total calls to f) is
T(n)=2Fib(n)-1=O(Fib(n))
and since Fib(n)=Θ(φ^n), where φ is the golden ratio
Φ=(1+sqrt{5})/2 = 1.618...
this proves that T(n) = Θ(1.618...^n) = O(n).
Using the Recursion Tree Method :
T(n)
↙ ↘
n-1 n – 2
↙ ↘ ↙ ↘
N – 2 n – 3 n – 3 n - 4
Each tree level is considered as a call for fib(x - 1) fib(x - 2) if you complete the recursion tree on this manner you will stop when x = 1 or x = 2 (base case) .... this tree shows only three levels of the recursion tree . To solve this tree you need these important informations : 1- height of the tree. 2-how much work is done at each level .
The height of this tree is 2^n and the work at each level is O(1) then the Order of this recurrence is Height * Work at each level = 2^n * 1 = O(2^n)

Resources