Big O complexity with n^2 log(n) - big-o

Two questions:
First, if f(n) = n(3n + nlog(n)) then why is f(n) Ω(n2)?
Second, why is n2log(n) not O(n2)?

These are both consequences of the fact that log(n) tends to infinity as n tends to infinity.
1) n(3n + nlog(n)) is omega(n^2) because for large n the 3n is negligible and n^2log(n) is bounded below by n^2
2) n^2log(n) is not O(n^2) since, for any constant K > 0, for any n > e^K you have that n^2log(n) > Kn^2, so no K satisfies n^2log(n) < Kn^2 for all but finitely many n.

Ω( ) is for putting the bound under the function. That means that the function will have running time complexity at least more that what is mentioned between the parentheses in Ω( ). Now, for the function f(n) = n(3n + nlog(n)), the dominating function out of the two functions involved (3n2 and n2Log(n)) is n2Log(n).
Therefore, any function smaller than the dominating function can act as the lower bound even if it may not be the tightest possible lower bound. So, f(n) is Ω(n2).
Next, growth rate of n2Log(n) is higher than n2 (as I already mentioned above which one is dominating). Therefore, n2Log(n) is a tighter bound (and therefore a better determinant) about the Big - O of f(n). Hence, f(n) is O(n2Log(n)) instead of O(n2).

Related

Asymptotic complexity of logarithmic functions

I know that in terms of complexity, O(logn) is faster than O(n), which is faster than O(nlogn), which is faster than O(n2).
But what about O(n2) and O(n2log), or O(n2.001) and O(n2log):
T1(n)=n^2 + n^2logn
What is the big Oh and omega of this function? Also, what's little oh?
versus:
T2(n)=n^2.001 + n^2logn
Is there any difference in big Oh now?
I'm having trouble understanding how to compare logn with powers of n. As in, is logn approximately n^0.000000...1 or n^1.000000...1?
O(n^k) is faster than O(n^k') for all k, k' >= 0 and k' > k
O(n^2) would be faster than O(n^2*logn)
Note that you can only ignore constants, nothing involving the input size can be ignored.
Thus, complexity of T(n)=n^2 + n^2logn would be the worse of the two, which is O(n^2logn).
Little-oh
Little oh in loose terms is a guaranteed upper bound. Yes, it is called little, and it is more restrictive.
n^2 = O(n^k) for k >= 2 but n^2 = o(n^k) for k > 2
Practically, it is Big-Oh which takes most of the limelight.
What about T(n)= n^2.001 + n^2logn?
We have n2.001 = n2*n0.001 and n2 * log(n).
To settle the question, we need to figure out what would eventually be bigger, n0.001 or log(n).
It turns out that a function of the form nk with k > 0 will eventually take over log(n) for a sufficiently large n.
Same is the case here, and thus T(n) = O(n2.001).
Practically though, log(n) will be larger than n0.001.
(103300)0.001 < log(103300) (1995.6 < 3300), and the sufficiently large n in this case would be just around 103650, an astronomical number.
Worth mentioning again, 103650. There are 1082 atoms in the universe.
T(n)=n^2 + n^2logn
What is the big Oh and omega of this function? Also, what's little oh?
Quoting a previous answer:
Don't forget big O notation represents a set. O(g(n)) is the set of
of all function f such that f does not grows faster than g,
formally is the same is saying that there exists C and n0 such
that we have |f(n)| <= C|g(n)| for every n >= n0. The expression
f(n) = O(g(n)) is a shorthand for saying that f(n) is in the set
O(g(n))
Also you can think of big O as ≤ and of small o as < (reference). So you care of more of finding relevant big O bound than small o. In your case it's even appropriate to use big theta which is =. Since n^2 log n dominates n^2 it's true that
T1(n)=n^2 + n^2logn = Ө(n^2 logn)
Now the second part. log n grows so slowly that even n^e, e > 0 dominates it. Interestingly, you can even prove that lim n^e/(logn)^k=inf as n goes to infinity. From this you have that n^0.001 dominates log n then
T2(n)=n^2.001 + n^2logn = Ө(n^2.001).
If f(n) = Ө(g(n)) it's also true that f(n) = O(g(n)) so to answer your question:
T1(n)=O(n^2 logn)
T2(n)=O(n^2.001)

How can an algorithm that is O(n) also be O(n^2), O(n^1000000), O(2^n)?

So the answer to this question What is the difference between Θ(n) and O(n)?
states that "Basically when we say an algorithm is of O(n), it's also O(n2), O(n1000000), O(2n), ... but a Θ(n) algorithm is not Θ(n2)."
I understand Big O to represent upper bound or worst case with that I don't understand how O(n) is also O(n2) and the other cases worse than O(n).
Perhaps I have some fundamental misunderstandings. Please help me understand this as I have been struggling for a while.
Thanks.
It's helpful to think of what big-Oh means: if a function is O(n), then c*n, where c is some positive number, is the upper-bound. If c*n is an upper-bound, it's clear that for integers, c*n^2 would also be an upper-bound. Also c*n^3, c*n^4, c*n^1000, etc.
The below graph shows the growth of functions, which are upper bounds of the function "to the right" of it; i.e., it grows faster on smaller n.
Suppose the running time of your algorithm is T(n) = 3n + 6 (i.e., an arbitrary polynomial of order 1).
It's true that T(n) = O(n) because 3n + 6 < 4n for all n > 5 (to use the definition of big-oh notation). It's also true that T(n) = O(n^2) because 3n + 6 < n^2 for all n > 5 (to use the defintion again).
It's also true that T(n) = Θ(n) because, in addition to the proof that it was O(n), it is true that 3n + 6 > n for all n > 1. However, you cannot prove that 3n + 6 > c n^2 for any value of c for arbitrarily large n. (Proof sketch: lim (cn^2 - 3n - 6) > 0 as n -> infinity).
I understand Big O to represent upper bound or worst case with that I don't understand how O(n) is also O(n2) and the other cases worse than O(n).
Intuitively, an "upper bound of x" means that something will always be less than or equal to x. If something is less than or equal to x, it is also less than or equal to x^2 and x^1000, for large enough values of x. So x^2 and x^1000 can also be upper bounds.
This is what Big-oh represents: upper bounds.
When we say that f(n) = O(g(n)), we mean only that for all sufficiently large n, there exists a constant c such that f(n) <= cg(n). Note that if f(n) = O(g(n)), we can always choose a function h(n) bigger than g(n) and since g(n) is eventually less than h(n), we have f(n) <= cg(n) <= ch(n), so f(n) = O(h(n)) as well.
Note that the O bound is not tight. The theta bound is the intersection of O(g(n)) and Omega(g(n)), where Omega gives the lower bound (it's like O, the upper bound, but bounds from below instead). If f(n) is bounded below by g(n), and h(n) is bigger than g(n), then if follows that f(n) is not (necessarily) bounded below by h(n).

How to we find a Tight Big O expression

for(i: 1 to n^2)
x = x + 1;
return x + 1;
N is the number of inputs. N>1 and tends to infinity
I understand that the worst (and the best) case running time is n^2 + 1. Hence, it'll be O(n^2). However, how do I find if it is a tight, big O expression? How do we find a tight big O expression? What is that?
Let your function be f(n)
You already worked out that the best case is n^2 (ommit +1 since constants indepently from the input are ignored).
More formally: Ω(n^2)
--> means you can find a function u(n) and a constant k such that k * u(n) <= f(n) in terms of complexity.
As you said the worst case is n^2 too.
Again formally: O(n^2)
--> means you can find a function v(n) and a constant k such that k * v(n) >= f(n) in terms of complexity.
Since Ω and O are sets of functions Theta is defined as the intersection of Ω and O. "Theta is upper and lower bound."
The intersection is n^2 --> Theta (n^2)
In an descriptive manner:
f(n) grows not much faster (or equal) than u(n).
f(n) grows not much faster (or equal) than v(n).
--> f(n) grows exactly like n^2
Keep in mind that mor often Ω and O are sets of different classes of functions.
E.g. Ω(log n)(searching in a tree) and O(n) (searching in a String) When dealing with such a case you are unable to specify an exact Theta value.

What exactly does big Ө notation represent?

I'm really confused about the differences between big O, big Omega, and big Theta notation.
I understand that big O is the upper bound and big Omega is the lower bound, but what exactly does big Ө (theta) represent?
I have read that it means tight bound, but what does that mean?
First let's understand what big O, big Theta and big Omega are. They are all sets of functions.
Big O is giving upper asymptotic bound, while big Omega is giving a lower bound. Big Theta gives both.
Everything that is Ө(f(n)) is also O(f(n)), but not the other way around.
T(n) is said to be in Ө(f(n)) if it is both in O(f(n)) and in Omega(f(n)). In sets terminology, Ө(f(n)) is the intersection of O(f(n)) and Omega(f(n))
For example, merge sort worst case is both O(n*log(n)) and Omega(n*log(n)) - and thus is also Ө(n*log(n)), but it is also O(n^2), since n^2 is asymptotically "bigger" than it. However, it is not Ө(n^2), Since the algorithm is not Omega(n^2).
A bit deeper mathematic explanation
O(n) is asymptotic upper bound. If T(n) is O(f(n)), it means that from a certain n0, there is a constant C such that T(n) <= C * f(n). On the other hand, big-Omega says there is a constant C2 such that T(n) >= C2 * f(n))).
Do not confuse!
Not to be confused with worst, best and average cases analysis: all three (Omega, O, Theta) notation are not related to the best, worst and average cases analysis of algorithms. Each one of these can be applied to each analysis.
We usually use it to analyze complexity of algorithms (like the merge sort example above). When we say "Algorithm A is O(f(n))", what we really mean is "The algorithms complexity under the worst1 case analysis is O(f(n))" - meaning - it scales "similar" (or formally, not worse than) the function f(n).
Why we care for the asymptotic bound of an algorithm?
Well, there are many reasons for it, but I believe the most important of them are:
It is much harder to determine the exact complexity function, thus we "compromise" on the big-O/big-Theta notations, which are informative enough theoretically.
The exact number of ops is also platform dependent. For example, if we have a vector (list) of 16 numbers. How much ops will it take? The answer is: it depends. Some CPUs allow vector additions, while other don't, so the answer varies between different implementations and different machines, which is an undesired property. The big-O notation however is much more constant between machines and implementations.
To demonstrate this issue, have a look at the following graphs:
It is clear that f(n) = 2*n is "worse" than f(n) = n. But the difference is not quite as drastic as it is from the other function. We can see that f(n)=logn quickly getting much lower than the other functions, and f(n) = n^2 is quickly getting much higher than the others.
So - because of the reasons above, we "ignore" the constant factors (2* in the graphs example), and take only the big-O notation.
In the above example, f(n)=n, f(n)=2*n will both be in O(n) and in Omega(n) - and thus will also be in Theta(n).
On the other hand - f(n)=logn will be in O(n) (it is "better" than f(n)=n), but will NOT be in Omega(n) - and thus will also NOT be in Theta(n).
Symmetrically, f(n)=n^2 will be in Omega(n), but NOT in O(n), and thus - is also NOT Theta(n).
1Usually, though not always. when the analysis class (worst, average and best) is missing, we really mean the worst case.
It means that the algorithm is both big-O and big-Omega in the given function.
For example, if it is Ө(n), then there is some constant k, such that your function (run-time, whatever), is larger than n*k for sufficiently large n, and some other constant K such that your function is smaller than n*K for sufficiently large n.
In other words, for sufficiently large n, it is sandwiched between two linear functions :
For k < K and n sufficiently large, n*k < f(n) < n*K
Theta(n): A function f(n) belongs to Theta(g(n)), if there exists positive constants c1 and c2 such that f(n) can be sandwiched between c1(g(n)) and c2(g(n)). i.e it gives both upper and as well as lower bound.
Theta(g(n)) = { f(n) : there exists positive constants c1,c2 and n1 such that
0<=c1(g(n))<=f(n)<=c2(g(n)) for all n>=n1 }
when we say f(n)=c2(g(n)) or f(n)=c1(g(n)) it represents asymptotically tight bound.
O(n): It gives only upper bound (may or may not be tight)
O(g(n)) = { f(n) : there exists positive constants c and n1 such that 0<=f(n)<=cg(n) for all n>=n1}
ex: The bound 2*(n^2) = O(n^2) is asymptotically tight, whereas the bound 2*n = O(n^2) is not asymptotically tight.
o(n): It gives only upper bound (never a tight bound)
the notable difference between O(n) & o(n) is f(n) is less than cg(n)
for all n>=n1 but not equal as in O(n).
ex: 2*n = o(n^2), but 2*(n^2) != o(n^2)
I hope this is what you may want to find in the classical CLRS(page 66):
Big Theta notation:
Nothing to mess up buddy!!
If we have a positive valued functions f(n) and g(n) takes a positive valued argument n then ϴ(g(n)) defined as {f(n):there exist constants c1,c2 and n1 for all n>=n1}
where c1 g(n)<=f(n)<=c2 g(n)
Let's take an example:
let f(n)=5n^2+2n+1
g(n)=n^2
c1=5 and c2=8 and n1=1
Among all the notations ,ϴ notation gives the best intuition about the rate of growth of function because it gives us a tight bound unlike big-oh and big -omega
which gives the upper and lower bounds respectively.
ϴ tells us that g(n) is as close as f(n),rate of growth of g(n) is as close to the rate of growth of f(n) as possible.
First of All Theory
Big O = Upper Limit O(n)
Theta = Order Function - theta(n)
Omega = Q-Notation(Lower Limit) Q(n)
Why People Are so Confused?
In many Blogs & Books How this Statement is emphasised is Like
"This is Big O(n^3)" etc.
and people often Confuse like weather
O(n) == theta(n) == Q(n)
But What Worth keeping in mind is They Are Just Mathematical Function With Names O, Theta & Omega
so they have same General Formula of Polynomial,
Let,
f(n) = 2n4 + 100n2 + 10n + 50 then,
g(n) = n4, So g(n) is Function which Take function as Input and returns Variable with Biggerst Power,
Same f(n) & g(n) for Below all explainations
Big O(n) - Provides Upper Bound
Big O(n4) = 3n4, Because 3n4 > 2n4
3n4 is value of Big O(n4) Just like f(x) = 3x
n4 is playing a role of x here so,
Replacing n4 with x'so, Big O(x') = 2x', Now we both are happy General Concept is
So 0 ≤ f(n) ≤ O(x')
O(x') = cg(n) = 3n4
Putting Value,
0 ≤ 2n4 + 100n2 + 10n + 50 ≤ 3n4
3n4 is our Upper Bound
Big Omega(n) - Provides Lower Bound
Theta(n4) = cg(n) = 2n4 Because 2n4 ≤ Our Example f(n)
2n4 is Value of Theta(n4)
so, 0 ≤ cg(n) ≤ f(n)
0 ≤ 2n4 ≤ 2n4 + 100n2 + 10n + 50
2n4 is our Lower Bound
Theta(n) - Provides Tight Bound
This is Calculated to find out that weather lower Bound is similar to Upper bound,
Case 1). Upper Bound is Similar to Lower Bound
if Upper Bound is Similar to Lower Bound, The Average Case is Similar
Example, 2n4 ≤ f(x) ≤ 2n4,
Then Theta(n) = 2n4
Case 2). if Upper Bound is not Similar to Lower Bound
In this case, Theta(n) is not fixed but Theta(n) is the set of functions with the same order of growth as g(n).
Example 2n4 ≤ f(x) ≤ 3n4, This is Our Default Case,
Then, Theta(n) = c'n4, is a set of functions with 2 ≤ c' ≤ 3
Hope This Explained!!
I am not sure why there is no short simple answer explaining big theta in plain english (seems like that was the question) so here it is
Big Theta is the range of values or the exact value (if big O and big Omega are equal) within which the operations needed for a function will grow

How to calculate big-theta

Can some one provide me a real time example for how to calculate big theta.
Is big theta some thing like average case, (min-max)/2?
I mean (minimum time - big O)/2
Please correct me if I am wrong, thanks
Big-theta notation represents the following rule:
For any two functions f(n), g(n), if f(n)/g(n) and g(n)/f(n) are both bounded as n grows to infinity, then f = Θ(g) and g = Θ(f). In that case, g is both an upper bound and a lower bound on the growth of f.
Here's an example algorithm:
def find-minimum(List)
min = +∞
foreach value in List
min = value if min > value
return min
We wish to evaluate the cost function c(n) where n is the size of the input list. This algorithm will perform one comparison for every item in the list, so c(n) = n.
c(n)/n = 1 which remains bounded as n goes to infinity, so c(n) grows no faster than n. This is what is meant by big-O notation c(n) = O(n). Conversely, n/C(n) = 1 also remains bounded, so c(n) grows no slower than n. Since it grows neither slower nor faster, it must grow at the same speed. This is what is meant by theta notation c(n) = Θ(n).
Note that c(n)/n² is also bounded, so c(n) = O(n²) as well — big-O notation is merely an upper bound on the complexity, so any O(n) function is also O(n²), O(n³)...
However, since n²/c(n) = n is not bounded, then c(n) ≠ Θ(n²). This is the interesting property of big-theta notation: it's both an upper bound and a lower bound on the complexity.
Big theta is a tight bound, for a function T(n): if: Omega(f(n))<=T(n)<=O(f(n)), then Theta(f(n)) is the tight bound for T(n).
In other words Theta(f(n)) 'describes' a function T(n), if both O [big O] and Omega, 'describe' the same T, with the same f.
for example, a quicksort [with correct median choices], always takes at most O(nlogn), at at least Omega(nlogn), so quicksort [with good median choices] is Theta(nlogn)
EDIT:
added discussion in comments:
Searching an array is still Theta(n). the Theta function does not indicate worst/best case, but the behavior of the desired case. i.e, searching for an array, T(n)=number of ops for worst case. in here, obviously T(n)<=O(n), but also T(n)>=n/2, because at worst case you need to iterate the whole array, so T(n)>=Omega(n) and therefore Theta(n) is asymptotic bound.
From http://en.wikipedia.org/wiki/Big_O_notation#Related_asymptotic_notations, we learn that "Big O" denotes an upper bound, whereas "Big Theta" denotes an upper and lower bound, i.e. in the limit as n goes to infinity:
f(n) = O(g(n)) --> |f(n)| < k.g(n)
f(n) = Theta(g(n)) --> k1.g(n) < f(n) < k2.g(n)
So you cannot infer Big Theta from Big O.
ig-Theta (Θ) notation provides an asymptotic upper and lower bound on the growth rate of an algorithm's running time. To calculate the big-Theta notation of a function, you need to find two non-negative functions, f(n) and g(n), such that:
There exist positive constants c1, c2 and n0 such that 0 <= c1 * g(n) <= f(n) <= c2 * g(n) for all n >= n0.
f(n) and g(n) have the same asymptotic growth rate.
The big-Theta notation for the function f(n) is then written as Θ(g(n)). The purpose of this notation is to provide a rough estimate of the running time, ignoring lower order terms and constant factors.
For example, consider the function f(n) = 2n^2 + 3n + 1. To calculate its big-Theta notation, we can choose g(n) = n^2. Then, we can find c1 and c2 such that 0 <= c1 * n^2 <= 2n^2 + 3n + 1 <= c2 * n^2 for all n >= n0. For example, c1 = 1/2 and c2 = 2. So, f(n) = Θ(n^2).

Resources