Maximum sum of path from left column to right column - algorithm

I'm trying to calculate the maximum sum that can be achieved in going from left column to right column in a grid. Allowed movements are up, down, right. I've implemented this solution (it's Breadth First Search) :
for(int i=1; i<=n; i++) {
Queue<Position> q = new LinkedList<Position>();
q.add(new Position(i, 1));
dp[i][1] = map[i][1];
while(!q.isEmpty()) {
Position node = q.poll();
visited[node.n][node.m] = 1;
if(dp[node.n][node.m] > max) {
max = dp[node.n][node.m];
}
if(visited[node.n-1][node.m] != 1 && node.n != 1 && dp[node.n-1][node.m] < dp[node.n][node.m] + map[node.n-1][node.m] && map[node.n-1][node.m] != -1) {
dp[node.n-1][node.m] = dp[node.n][node.m] + map[node.n-1][node.m];
q.add(new Position(node.n-1, node.m));
}
if(visited[node.n+1][node.m] != 1 && node.n != n && dp[node.n +1][node.m] < dp[node.n][node.m] + map[node.n+1][node.m] && map[node.n+1][node.m] != -1) {
dp[node.n +1][node.m] = dp[node.n][node.m] + map[node.n+1][node.m];
q.add(new Position(node.n + 1, node.m));
}
if(visited[node.n][node.m+1] != 1 && node.m != m && dp[node.n][node.m+1] < dp[node.n][node.m] + map[node.n][node.m+1] && map[node.n][node.m+1] != -1) {
dp[node.n][node.m+1] = dp[node.n][node.m] + map[node.n][node.m+1];
q.add(new Position(node.n, node.m+1));
}
}
}
static class Position {
int n, m;
public Position(int row, int column) {
this.n = row;
this.m = column;
}
}
Example Input:
-1 4 5 1
2 -1 2 4
3 3 -1 3
4 2 1 2
The problem with my solution is it should reach 2 (in last row 2nd column) by following 4->3->3->2 but my solution put 2 in visited state so it won't check it. And if I remove visited array, it will get trapped in infinite loop of up, down, up, down on any cell.
Edit : Each point can be visited only once.

This problem can be solved with a linear programming approach, but there is a small twist because you cannot visit each cell more than once but the movements can actually take you to that condition.
To solve the issue you can however note that in a given position (x, y) you either
just arrived at (x, y) from (x-1, y) and therefore you are allowed to go up, down or right (unless you're on the edges, of course)
arrived at (x, y) from (x, y-1) (i.e. from above) and then you're allowed only to go down or right
arrived at (x, y) from (x, y+1) (i.e. from below) and then you're allowed only to go up or right
This translates directly in the following recursive-memoized solution (code is in Python):
matrix = [[-1, 4, 5, 1],
[ 2,-1, 2, 4],
[ 3, 3,-1, 3],
[ 4, 2, 1, 2]]
rows = len(matrix)
cols = len(matrix[0])
cache = {}
def maxsum(dir, x, y):
key = (dir, x, y)
if key in cache: return cache[key]
base = matrix[y][x]
if x < cols-1:
best = base + maxsum("left", x+1, y)
else:
best = base
if dir != "above" and y > 0:
best = max(best, base + maxsum("below", x, y-1))
if dir != "below" and y < rows-1:
best = max(best, base + maxsum("above", x, y+1))
cache[key] = best
return best
print(max(maxsum("left", 0, y) for y in range(rows)))
If you are not allowed to step over a negative value (even if that would guarantee a bigger sum) the changes are trivial (and you need to specify what to return if there are no paths going from left column to right column).

Related

How can I find the count of all possible paths between the 1st node and all other nodes in a directed graph? [duplicate]

I have found this interesting dynamic-programming problem and want to know the approach .
We are given an array 'a' of size-'n'.
Each element of the array is either '1' or '2'.
We start at index '0' . If a[i]=1 , we can go to i+1 or i-1.
On the contrary, If a[i]=2 , we can go to i+1 or i+2 or i-1 or i-2.
We have to find the number of all possible paths .
**Main Constraint ** : - 1) We can go to a particular index in an array only once .
2) We always start at the index-'0' .
3) A path can end anytime we want :- )
Example array : --> [1,1,1,1]
Answer : - 4
1ST possible path : [0]
2ND possible path : [0,1]
3rd possible path : [0,1,2]
4th possible path : [0,1,2,3]
Another example : -
[2,2,2]
Answer:- 5
Paths : - [0],[0,1],[0,1,2] , [0,2,1] , [0,2] .
(This question is divided into-3-parts!)
Value(s) of n are in range : - 1) [1,100000]
2) [1,10]
3)[1,1000]
Consider used spaces.
0 1 2 3 4 5 6
^
In order to reach a number from the right, the cell just before it must have been used. Therefore, all the ways to end with x coming from the left cannot include numbers from the right. And all the ways to end with x coming from the right used x-1 and a set of moves to the right of x disjoint from the left side.
Let f(A, x) = l(A, x) + r(A, x), where l(A, x) represents all ways to end at x coming from the left; r(A, x), coming from the right.
To obtain l(A, x), we need:
(1) all ways to reach (x-1)
= l(A, x-1)
(there are no numbers used to
the right of x, and since
x is used last, we could not
have reached x-1 from the right.)
(2) all ways to reach (x-2):
cleary we need l(A, x-2). Now
to reach (x-2) from the right,
the only valid path would have
been ...(x-3)->(x-1)->(x-2)
which equals the number of ways
to reach (x-3) from the left.
= l(A, x-2) + l(A, x-3)
To obtain r(A, x), we need:
(1) all ways to reach (x+1) so as
to directly go from there to x
= l(A, x-1)
(We can only reach (x+1) from (x-1).)
(2) all ways to reach (x+2) after
starting at (x+1)
= l(A, x-1) * f(A[x+1...], 1)
(To get to the starting point in
A[x+1...], we must first get to
(x-1).)
So it seems that
f(A, x) = l(A, x) + r(A, x)
l(A, x) =
l(A, x-1) + l(A, x-2) + l(A, x-3)
r(A, x) =
l(A, x-1) + l(A, x-1) * f(A[x+1...], 1)
The JavaScript code below tries a different 7-element array each time we run it. I leave memoisation and optimisation to the reader (for efficiently tabling f(_, 1), notice that l(_, 1) = 1).
function f(A, x){
if (x < 0 || x > A.length - 1)
return 0
return l(A, x) + r(A, x)
function l(A, x){
if (x < 0 || x > A.length - 1)
return 0
if (x == 0)
return 1
let result = l(A, x-1)
if (A[x-2] && A[x-2] == 2){
result += l(A, x-2)
if (A[x-3] && A[x-3] == 2)
result += l(A, x-3)
}
return result
}
function r(A, x){
if (x < 0 || x >= A.length - 1 || !(A[x-1] && A[x-1] == 2))
return 0
let result = l(A, x-1)
if (A[x+2] && A[x+2] == 2)
result += l(A, x-1) * f(A.slice(x+1), 1)
return result
}
}
function validate(A){
let n = A.length
function g(i, s){
if (debug)
console.log(s)
let result = 1
let [a, b] = [i+1, i-1]
if (a < n && !s.includes(a))
result += g(a, s.slice().concat(a))
if (b >= 0 && !s.includes(b))
result += g(b, s.slice().concat(b))
if (A[i] == 2){
[a, b] = [i+2, i-2]
if (a < n && !s.includes(a))
result += g(a, s.slice().concat(a))
if (b >= 0 && !s.includes(b))
result += g(b, s.slice().concat(b))
}
return result
}
return g(0, [0])
}
let debug = false
let arr = []
let n = 7
for (let i=0; i<n; i++)
arr[i] = Math.ceil(Math.random() * 2)
console.log(JSON.stringify(arr))
console.log('')
let res = 0
for (let x=0; x<arr.length; x++){
let c = f(arr, x)
if (debug)
console.log([x, c])
res += c
}
if (debug)
console.log('')
let v = validate(arr)
if (debug)
console.log('')
console.log(v)
console.log(res)

Cutting algorithm of two dimensional board

I have problem with my homework.
Given a board of dimensions m x n is given, cut this board into rectangular pieces with the best total price. A matrix gives the price for each possible board size up through the original, uncut board.
Consider a 2 x 2 board with the price matrix:
3 4
3 6
We have a constant cost for each cutting for example 1.
Piece of length 1 x 1 is worth 3.
Horizontal piece of length 1 x 2 is worth 4.
Vertical piece of length 1 x 2 is worth 3.
Whole board is worth 6.
For this example, the optimal profit is 9, because we cut board into 1 x 1 pieces. Each piece is worth 3 and we done a 3 cut, so 4 x 3 - 3 x 1 = 9.
Second example:
1 2
3 4
Now I have to consider all the solutions:
4 1x1 pieces is worth 4x1 - (cost of cutting) 3x1 = 1
2 horizontal 1x2 is worth 2x2 - (cost of cutting) 1x1 = 3
2 vertical 1x2 is worth 3x2 - (cost of cutting) 1x1 = 5 -> best optimal profit
1 horizontal 1x2 + 2 x (1x1) pieces is worth 2 + 2 - (cost of cutting) 2 = 2
1 vertical 1x2 + 2 x (1x1) pieces is worth 3 + 2 - (cost of cutting) 2 = 3
I've read a lot about rod cutting algorithm but I don't have any idea how to bite this problem.
Do you have any ideas?
I did this in Python. The algorithm is
best_val = value of current board
check each horizontal and vertical cut for better value
for cut point <= half the current dimension (if none, return initial value)
recur on the two boards formed
if sum of values > best_val
... best_val = that sum
... record cut point and direction
return result: best_val, cut point, and direction
I'm not sure what you'll want for return values; I gave back the best value and tree of boards. For your second example, this is
(5, [[2, 1], [2, 1]])
Code, with debugging traces (indent and the labeled prints):
indent = ""
indent_len = 3
value = [[1, 2],
[3, 4]]
def best_cut(high, wide):
global indent
print indent, "ENTER", high, wide
indent += " " * indent_len
best_val = value[high-1][wide-1]
print indent, "Default", best_val
cut_vert = None
cut_val = best_val
cut_list = []
# Check horizontal cuts
for h_cut in range(1, 1 + high // 2):
print indent, "H_CUT", h_cut
cut_val1, cut_list1 = best_cut(h_cut, wide)
cut_val2, cut_list2 = best_cut(high - h_cut, wide)
cut_val = cut_val1 + cut_val2
if cut_val > best_val:
cut_list = [cut_list1, cut_list2]
print indent, "NEW H", h_cut, cut_val, cut_list
best_val = cut_val
cut_vert = False
best_h = h_cut
# Check vertical cuts
for v_cut in range(1, 1 + wide // 2):
print indent, "V_CUT", v_cut
cut_val1, cut_list1 = best_cut(high, v_cut)
cut_val2, cut_list2 = best_cut(high, wide - v_cut)
cut_val = cut_val1 + cut_val2
if cut_val > best_val:
cut_list = [cut_list1, cut_list2]
print indent, "NEW V", v_cut, cut_val, cut_list
best_val = cut_val
cut_vert = True
best_v = v_cut
# Return result of best cut
# Remember to subtract the cut cost
if cut_vert is None:
result = best_val , [high, wide]
elif cut_vert:
result = best_val-1, cut_list
else:
result = best_val-1, cut_list
indent = indent[indent_len:]
print indent, "LEAVE", cut_vert, result
return result
print best_cut(2, 2)
Output (profit and cut sizes) for each of the two tests:
(9, [[[1, 1], [1, 1]], [[1, 1], [1, 1]]])
(5, [[2, 1], [2, 1]])
Let f(h,w) represent the best total price achievable for a board with height h and width w with cutting price c. Then
f(h,w) = max(
price_matrix(h, w),
f(i, w) + f(h - i, w) - c,
f(h, j) + f(h, w - j) - c
)
for i = 1 to floor(h / 2)
for j = 1 to floor(w / 2)
Here's a bottom-up example in JavaScript that returns the filled table given the price matrix. The answer would be in the bottom right corner.
function f(prices, cost){
var m = new Array(prices.length);
for (let i=0; i<prices.length; i++)
m[i] = [];
for (let h=0; h<prices.length; h++){
for (let w=0; w<prices[0].length; w++){
m[h][w] = prices[h][w];
if (h == 0 && w == 0)
continue;
for (let i=1; i<(h+1>>1)+1; i++)
m[h][w] = Math.max(
m[h][w],
m[i-1][w] + m[h-i][w] - cost
);
for (let i=1; i<(w+1>>1)+1; i++)
m[h][w] = Math.max(
m[h][w],
m[h][i-1] + m[h][w-i] - cost
);
}
}
return m;
}
$('#submit').click(function(){
let prices = JSON.parse($('#input').val());
let result = f(prices, 1);
let str = result.map(line => JSON.stringify(line)).join('<br>');
$('#output').html(str);
});
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<textarea id="input">[[3, 4],
[3, 6]]</textarea>
<p><button type="button" id="submit">Submit</button></p>
<div id="output"><div>
Some thoughts on the problem rather than an answer:
It was a long time ago i studied dynamic programming, but i wrote up the following pseudo code which is think is O(n^2):
// 'Board'-class not included
val valueOfBoards: HashMap<Board, int>
fun cutBoard(b: Board, value: int) : int {
if (b.isEmpty()) return 0
if (valueOfBoards[b] > value) {
return 0;
} else {
valueOfBoards[b] = value
}
int maxValue = Integer.MIN_VALUE
for (Board piece : b.getPossiblePieces()) {
val (cuttingCost, smallerBoard) = b.cutOffPiece(piece)
val valueGained: int = piece.getPrice() - cuttingCost
maxValue = Max(maxValue, valueGained + cutBoard(smallerBoard, value + valueGained))
}
return maxValue;
}
The board class is not trivially implemented, here is some elaboration:
// returns all boards which fits in the current board
// for the initial board this will be width*height subboards
board.getPossiblePieces()
// returns a smaller board and the cutting cost of the cut
// I can see this becoming complex, depends on how one chooses to represent the board.
board.cutOffPiece(piece: Board)
It is not clear to me at the moment if cutOffPiece() breaks the algorithm in that you do not know how to optimally cut. I think since the algorithm will proceed from larger pieces to smaller pieces at some point it will be fine.
I tried to solve the re computation of sub problems (identical boards) by storing results in something like HashMap<Board, price> and comparing the new board with the stored best price before proceeding.
According to your answers I've prepared bottom-up and top-down implementation.
Bottom-up:
function bottomUp($high, $wide, $matrix){
$m = [];
for($h = 0; $h < $high; $h++){
for($w = 0; $w < $wide; $w++){
$m[$h][$w] = $matrix[$h][$w];
if($h == 0 && $w == 0){
continue;
}
for($i = 1; $i < ($h + 1 >> 1) + 1; $i++){
$m[$h][$w] = max(
$m[$h][$w],
$m[$i - 1][$w] + $m[$h - $i][$w] - CUT_COST
);
}
for($i = 1; $i < ($w + 1 >> 1) + 1; $i++){
$m[$h][$w] = max(
$m[$h][$w],
$m[$h][$i - 1] + $m[$h][$w - $i] - CUT_COST
);
}
}
}
return $m[$high-1][$wide-1];
}
Top-down:
function getBestCut($high, $wide, $matrix){
global $checked;
if(isset($checked[$high][$wide])){
return $checked[$high][$wide];
}
$bestVal = $matrix[$high-1][$wide-1];
$cutVert = CUT_VERT_NONE;
$cutVal = $bestVal;
$cutList = [];
for($hCut = 1; $hCut < 1 + floor($high/2); $hCut++){
$result1 = getBestCut($hCut, $wide, $matrix);
$cutVal1 = $result1[0];
$cutList1 = $result1[1];
$result2 = getBestCut($high - $hCut, $wide, $matrix);
$cutVal2 = $result2[0];
$cutList2 = $result2[1];
$cutVal = $cutVal1 + $cutVal2;
if($cutVal > $bestVal){
$cutList = [$cutList1, $cutList2];
$bestVal = $cutVal;
$cutVert = CUT_VERT_FALSE;
$bestH = $hCut;
}
$checked[$hCut][$wide] = $result1;
$checked[$high - $hCut][$wide] = $result2;
}
for($vCut = 1; $vCut < 1 + floor($wide/2); $vCut++){
$result1 = getBestCut($hCut, $vCut, $matrix);
$cutVal1 = $result1[0];
$cutList1 = $result1[1];
$result2 = getBestCut($high, $wide - $vCut, $matrix);
$cutVal2 = $result2[0];
$cutList2 = $result2[1];
$cutVal = $cutVal1 + $cutVal2;
if($cutVal > $bestVal){
$cutList = [$cutList1, $cutList2];
$bestVal = $cutVal;
$cutVert = CUT_VERT_TRUE;
$bestH = $vCut;
}
$checked[$hCut][$vCut] = $result1;
$checked[$high][$wide - $vCut] = $result2;
}
if($cutVert == CUT_VERT_NONE){
$result = [$bestVal, [$high, $wide]];
}else if($cutVert == CUT_VERT_TRUE){
$result = [$bestVal - CUT_COST, $cutList];
}else{
$result = [$bestVal - CUT_COST, $cutList];
}
return $result;
}
Please tell me are they correct implementation of this method?
I wonder if time complexity is O(m^2*n^2) in top-down method?

Calculate minimum distance in a straight line using BFS

Trying to solve this problem using BFS.
Problem Gist: Initial and final position is given for a rook placed in a matrix. You are required to find out minimum number of steps for rook to reach final position. Some position marked with "X" shouldn't be crossed, whereas "." are the allowable positions.
Matrix:
.X.
.X.
...
source position: 0,0
target position: 0,2
answer:3 (0,0) -> (2,0) - > (2,2) -> (0,2)
My solution basically does below:
I start doing BFS from source node and after I dequeue the node I am adding all the vertical and horizontal nodes in memory with the current distance of that node plus 1. After that I am checking if the destination node is present in memory and if it is present I am returning that distance.
This below solution is not working in some of the cases. Any suggestions?
def update_distance(memoize_dist, current, n, count, matrix):
directions = [1, -1, 1, -1]
current_x, current_y = current
temp_x, temp_y = current
for direction in directions:
while temp_x < n and temp_x >= 0:
temp_x += direction
temp = (temp_x, current_y)
if temp_x >= n or temp_x < 0 or matrix[temp_x][current_y] == 'X':
temp_x, temp_y = (current_x, current_y)
break
if temp not in memoize_dist.keys():
memoize_dist[temp] = count
for direction in directions:
while temp_y < n and temp_y >= 0:
temp_y += direction
temp = (current_x, temp_y)
if temp_y >= n or temp_y < 0 or matrix[current_x][temp_y] == 'X':
temp_x, temp_y = (current_x, current_y)
break
if temp not in memoize_dist.keys():
memoize_dist[temp] = count
def get_shortest(n, src, target, matrix):
queue, memoize, memoize_dist = [], {}, {}
queue.append((src[0], src[1], 0))
memoize_dist[(src[0], src[1])] = 0
while len(queue):
x, y, count = queue.pop(0)
cur = (x, y)
if cur in memoize.keys() and memoize[cur] != -1:
continue
memoize[cur] = 1
update_distance(memoize_dist, cur, n, count+1, matrix)
if target in memoize_dist.keys():
return memoize_dist[target]
directions = [1, -1, 1, -1]
for direction in directions:
if cur[0]+direction < n and cur[0]+direction >= 0 and matrix[cur[0]+direction][cur[1]] != 'X':
queue.append((cur[0]+direction, cur[1], memoize_dist[(cur[0]+direction, cur[1])]))
if cur[1]+direction < n and cur[1]+direction >= 0 and matrix[cur[0]][cur[1]+direction] != 'X':
queue.append((cur[0], cur[1]+direction, memoize_dist[(cur[0], cur[1]+direction)]))
n = int(input())
matrix = []
for i in range(n):
matrix.append(input())
start_x, start_y, dest_x, dest_y = map(int, input().split(" "))
print(get_shortest(n, (start_x, start_y), (dest_x, dest_y), matrix))

Find close path or region using recursive method

I have a object in 2d array and i want to traverse through them top, left, right for that object acutally i want to check if there are making some loop or better making some closed region. See this picture for better explanation.
Acutally i have a X x Y of slot and when user touch on any of the region it adds the brick there so what i want to do is every time user add a brick check if it is making a close path.
I have writen recursive function for that but it's not working fine it always go for the top only and not right and left. Here is the code
function checkTrap(y,x)
if all_tiles[y][x].state == "changed" then --if brick is added at that location
last_move_y = y
last_move_x = x
--check for top
y = y - 1
if( y >= 1 and y <= 6 and (last_move_y ~= y or last_move_x ~= x) ) then
print("Moved to top at"..y..", "..x)
return checkTrap(y, x)
end
--check for bottom
y = y + 1
if( y >= 1 and y <= 6 and (last_move_y ~= y or last_move_x ~= x) ) then
print("Moved to bottom at"..y..", "..x)
return checkTrap(y, x)
end
--check for left
x = x - 1
if( x >= 1 and x <= 6 and (last_move_y ~= y or last_move_x ~= x) ) then
print("Moved to left at"..y..", "..x)
return checkTrap(y, x)
end
--check for right
x = x + 1
if( x >= 1 and x <= 6 and (last_move_y ~= y or last_move_x ~= x) ) then
print("Moved to right at"..y..", "..x)
return checkTrap(y, x)
end
elseif all_tiles[y][x] == object then
print("it's a loop"..y..", "..x)
return true;
else
print("not changed")
return false
end
end
Edit : New Solution
function findClosedRegion()
local currFlag, isClose = -1, false
local isVisited = {
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1}}
local k, m = 1, 1
while k <= 6 and not isClose
do
print("K "..k)
while m <= 6 and not isClose
do
print("M "..m)
if not isBrick[k][m] and isVisited[k][m] == -1 then
local cellsi = Stack:Create()
local cellsj = Stack:Create()
cellsi:push(k)
print("Pushed k "..k)
cellsj:push(m)
print("Pushed m "..m)
currFlag = currFlag + 1
isClose = true
while cellsi:getn() > 0 and isClose do
local p = cellsi:pop()
print("Pop p "..p)
local q = cellsj:pop()
print("Pop q "..q)
if( p >= 1 and p <= 6 and q >= 1 and q <= 6 ) then
if(not isBrick[p][q]) then
print("white ")
if(isVisited[p][q] == -1) then
print("invisited")
isVisited[p][q] = currFlag
cellsi.push(p - 1)
cellsj.push(q)
cellsi.push(p + 1)
cellsj.push(q)
cellsi.push(p)
cellsj.push(q + 1)
cellsi.push(p)
cellsj.push(q - 1)
cellsi:list()
else
if(isVisited[p][q] < currFlag) then
print("visited < currFlag")
isClose = false
end
end
end
else
isClose = false
end --p and q if ends here
end -- tile while end
else
--print("changed and not -1")
end
m = m + 1
end -- m while end
if(isClose) then
print("Closed path")
end
m = 1
k = k + 1
end -- k while end
end
The structure of the implementation does not recurse into other directions as only the first branch is called; somehow all neighbors should be included. Apparently you try to implement a kind of Deph-first search on your array. The approach seems absolutely rightm, but all neighbors of a cell have to be taken into account. What perhaps would help most would be to do a connected component analysis and fill all the connected components which touch the border.
EDITED:
Instead if searching with the help of black cells, we should search with white cells because your goal is to find area bound by black cells, even if diagonally adjacent. We should find a group of white cells which is only bordered by black cells and not by the border of the whole main grid. That should satisfy your purpose.
JS Fiddle: http://jsfiddle.net/4d4wqer2/
This is the revised algorithm I came up with:
for each cell and until closed area not found
if white and visitedValue = -1
push cell to stack
while stack has values and closed area not found
pop cell from stack
if invalid cell // Cell coordinates are invalid
this area is not closed, so break from the while
else
if white
if visitedValue = -1
{
mark visited
push neighboring four cells to the stack
}
else
if visitedValue > currVisitNumber // The current cells are part of previous searched cell group, which was not a closed group.
this area is not closed, so break from the while
if closed area found
show message
Programmed using JQuery:
function findArea() {
var currFlag = -1, isvisited = [], isClosed = false;
for (var k = 0; k < rows; k++) { // Initialize the isvisited array
isvisited[k] = [];
for (var m = 0; m < cols; m++)
isvisited[k][m] = -1;
}
for (var k = 0; k < rows && !isClosed; k++)
for (var m = 0; m < cols && !isClosed; m++) {
if (!isblack[k][m] && isvisited[k][m] == -1) { // Unvisited white cell
var cellsi = [k], cellsj = [m];
currFlag++;
isClosed = true;
while (cellsi.length > 0 && isClosed) { // Stack has cells and no closed area is found
var p = cellsi.pop(), q = cellsj.pop();
if (p >= 0 && p < rows && q >= 0 && q < cols) { // The cell coord.s are valid
if (!isblack[p][q])
if (isvisited[p][q] == -1) {
isvisited[p][q] = currFlag; // Mark visited
cellsi.push(p - 1); // Push the coord.s of the four adjacent cells
cellsj.push(q);
cellsi.push(p + 1);
cellsj.push(q);
cellsi.push(p);
cellsj.push(q + 1);
cellsi.push(p);
cellsj.push(q - 1);
}
else
if (isvisited[p][q] < currFlag) // The current group of white cells was part of a previous group of white cells which were found to be unbound by the black cells. So, skip this group.
isClosed = false;
}
else
isClosed = false; // The current cell is out of border. Hence skip the whole group.
}
}
}
if (isClosed)
alert('Closed area found');
}
JS Fiddle: http://jsfiddle.net/4d4wqer2/

Algorithm for iterating over an outward spiral on a discrete 2D grid from the origin

For example, here is the shape of intended spiral (and each step of the iteration)
y
|
|
16 15 14 13 12
17 4 3 2 11
-- 18 5 0 1 10 --- x
19 6 7 8 9
20 21 22 23 24
|
|
Where the lines are the x and y axes.
Here would be the actual values the algorithm would "return" with each iteration (the coordinates of the points):
[0,0],
[1,0], [1,1], [0,1], [-1,1], [-1,0], [-1,-1], [0,-1], [1,-1],
[2,-1], [2,0], [2,1], [2,2], [1,2], [0,2], [-1,2], [-2,2], [-2,1], [-2,0]..
etc.
I've tried searching, but I'm not exactly sure what to search for exactly, and what searches I've tried have come up with dead ends.
I'm not even sure where to start, other than something messy and inelegant and ad-hoc, like creating/coding a new spiral for each layer.
Can anyone help me get started?
Also, is there a way that can easily switch between clockwise and counter-clockwise (the orientation), and which direction to "start" the spiral from? (the rotation)
Also, is there a way to do this recursively?
My application
I have a sparse grid filled with data points, and I want to add a new data point to the grid, and have it be "as close as possible" to a given other point.
To do that, I'll call grid.find_closest_available_point_to(point), which will iterate over the spiral given above and return the first position that is empty and available.
So first, it'll check point+[0,0] (just for completeness's sake). Then it'll check point+[1,0]. Then it'll check point+[1,1]. Then point+[0,1], etc. And return the first one for which the position in the grid is empty (or not occupied already by a data point).
There is no upper bound to grid size.
There's nothing wrong with direct, "ad-hoc" solution. It can be clean enough too.
Just notice that spiral is built from segments. And you can get next segment from current one rotating it by 90 degrees. And each two rotations, length of segment grows by 1.
edit Illustration, those segments numbered
... 11 10
7 7 7 7 6 10
8 3 3 2 6 10
8 4 . 1 6 10
8 4 5 5 5 10
8 9 9 9 9 9
// (di, dj) is a vector - direction in which we move right now
int di = 1;
int dj = 0;
// length of current segment
int segment_length = 1;
// current position (i, j) and how much of current segment we passed
int i = 0;
int j = 0;
int segment_passed = 0;
for (int k = 0; k < NUMBER_OF_POINTS; ++k) {
// make a step, add 'direction' vector (di, dj) to current position (i, j)
i += di;
j += dj;
++segment_passed;
System.out.println(i + " " + j);
if (segment_passed == segment_length) {
// done with current segment
segment_passed = 0;
// 'rotate' directions
int buffer = di;
di = -dj;
dj = buffer;
// increase segment length if necessary
if (dj == 0) {
++segment_length;
}
}
}
To change original direction, look at original values of di and dj. To switch rotation to clockwise, see how those values are modified.
Here's a stab at it in C++, a stateful iterator.
class SpiralOut{
protected:
unsigned layer;
unsigned leg;
public:
int x, y; //read these as output from next, do not modify.
SpiralOut():layer(1),leg(0),x(0),y(0){}
void goNext(){
switch(leg){
case 0: ++x; if(x == layer) ++leg; break;
case 1: ++y; if(y == layer) ++leg; break;
case 2: --x; if(-x == layer) ++leg; break;
case 3: --y; if(-y == layer){ leg = 0; ++layer; } break;
}
}
};
Should be about as efficient as it gets.
This is the javascript solution based on the answer at
Looping in a spiral
var x = 0,
y = 0,
delta = [0, -1],
// spiral width
width = 6,
// spiral height
height = 6;
for (i = Math.pow(Math.max(width, height), 2); i>0; i--) {
if ((-width/2 < x && x <= width/2)
&& (-height/2 < y && y <= height/2)) {
console.debug('POINT', x, y);
}
if (x === y
|| (x < 0 && x === -y)
|| (x > 0 && x === 1-y)){
// change direction
delta = [-delta[1], delta[0]]
}
x += delta[0];
y += delta[1];
}
fiddle: http://jsfiddle.net/N9gEC/18/
This problem is best understood by analyzing how changes coordinates of spiral corners. Consider this table of first 8 spiral corners (excluding origin):
x,y | dx,dy | k-th corner | N | Sign |
___________________________________________
1,0 | 1,0 | 1 | 1 | +
1,1 | 0,1 | 2 | 1 | +
-1,1 | -2,0 | 3 | 2 | -
-1,-1 | 0,-2 | 4 | 2 | -
2,-1 | 3,0 | 5 | 3 | +
2,2 | 0,3 | 6 | 3 | +
-2,2 | -4,0 | 7 | 4 | -
-2,-2 | 0,-4 | 8 | 4 | -
By looking at this table we can calculate X,Y of k-th corner given X,Y of (k-1) corner:
N = INT((1+k)/2)
Sign = | +1 when N is Odd
| -1 when N is Even
[dx,dy] = | [N*Sign,0] when k is Odd
| [0,N*Sign] when k is Even
[X(k),Y(k)] = [X(k-1)+dx,Y(k-1)+dy]
Now when you know coordinates of k and k+1 spiral corner you can get all data points in between k and k+1 by simply adding 1 or -1 to x or y of last point.
Thats it.
good luck.
I would solve it using some math. Here is Ruby code (with input and output):
(0..($*.pop.to_i)).each do |i|
j = Math.sqrt(i).round
k = (j ** 2 - i).abs - j
p = [k, -k].map {|l| (l + j ** 2 - i - (j % 2)) * 0.5 * (-1) ** j}.map(&:to_i)
puts "p => #{p[0]}, #{p[1]}"
end
E.g.
$ ruby spiral.rb 10
p => 0, 0
p => 1, 0
p => 1, 1
p => 0, 1
p => -1, 1
p => -1, 0
p => -1, -1
p => 0, -1
p => 1, -1
p => 2, -1
p => 2, 0
And golfed version:
p (0..$*.pop.to_i).map{|i|j=Math.sqrt(i).round;k=(j**2-i).abs-j;[k,-k].map{|l|(l+j**2-i-j%2)*0.5*(-1)**j}.map(&:to_i)}
Edit
First try to approach the problem functionally. What do you need to know, at each step, to get to the next step?
Focus on plane's first diagonal x = y. k tells you how many steps you must take before touching it: negative values mean you have to move abs(k) steps vertically, while positive mean you have to move k steps horizontally.
Now focus on the length of the segment you're currently in (spiral's vertices - when the inclination of segments change - are considered as part of the "next" segment). It's 0 the first time, then 1 for the next two segments (= 2 points), then 2 for the next two segments (= 4 points), etc. It changes every two segments and each time the number of points part of that segments increase. That's what j is used for.
Accidentally, this can be used for getting another bit of information: (-1)**j is just a shorthand to "1 if you're decreasing some coordinate to get to this step; -1 if you're increasing" (Note that only one coordinate is changed at each step). Same holds for j%2, just replace 1 with 0 and -1 with 1 in this case. This mean they swap between two values: one for segments "heading" up or right and one for those going down or left.
This is a familiar reasoning, if you're used to functional programming: the rest is just a little bit of simple math.
It can be done in a fairly straightforward way using recursion. We just need some basic 2D vector math and tools for generating and mapping over (possibly infinite) sequences:
// 2D vectors
const add = ([x0, y0]) => ([x1, y1]) => [x0 + x1, y0 + y1];
const rotate = θ => ([x, y]) => [
Math.round(x * Math.cos(θ) - y * Math.sin(θ)),
Math.round(x * Math.sin(θ) + y * Math.cos(θ))
];
// Iterables
const fromGen = g => ({ [Symbol.iterator]: g });
const range = n => [...Array(n).keys()];
const map = f => it =>
fromGen(function*() {
for (const v of it) {
yield f(v);
}
});
And now we can express a spiral recursively by generating a flat line, plus a rotated (flat line, plus a rotated (flat line, plus a rotated ...)):
const spiralOut = i => {
const n = Math.floor(i / 2) + 1;
const leg = range(n).map(x => [x, 0]);
const transform = p => add([n, 0])(rotate(Math.PI / 2)(p));
return fromGen(function*() {
yield* leg;
yield* map(transform)(spiralOut(i + 1));
});
};
Which produces an infinite list of the coordinates you're interested in. Here's a sample of the contents:
const take = n => it =>
fromGen(function*() {
for (let v of it) {
if (--n < 0) break;
yield v;
}
});
const points = [...take(5)(spiralOut(0))];
console.log(points);
// => [[0,0],[1,0],[1,1],[0,1],[-1,1]]
You can also negate the rotation angle to go in the other direction, or play around with the transform and leg length to get more complex shapes.
For example, the same technique works for inward spirals as well. It's just a slightly different transform, and a slightly different scheme for changing the length of the leg:
const empty = [];
const append = it1 => it2 =>
fromGen(function*() {
yield* it1;
yield* it2;
});
const spiralIn = ([w, h]) => {
const leg = range(w).map(x => [x, 0]);
const transform = p => add([w - 1, 1])(rotate(Math.PI / 2)(p));
return w * h === 0
? empty
: append(leg)(
fromGen(function*() {
yield* map(transform)(spiralIn([h - 1, w]));
})
);
};
Which produces (this spiral is finite, so we don't need to take some arbitrary number):
const points = [...spiralIn([3, 3])];
console.log(points);
// => [[0,0],[1,0],[2,0],[2,1],[2,2],[1,2],[0,2],[0,1],[1,1]]
Here's the whole thing together as a live snippet if you want play around with it:
// 2D vectors
const add = ([x0, y0]) => ([x1, y1]) => [x0 + x1, y0 + y1];
const rotate = θ => ([x, y]) => [
Math.round(x * Math.cos(θ) - y * Math.sin(θ)),
Math.round(x * Math.sin(θ) + y * Math.cos(θ))
];
// Iterables
const fromGen = g => ({ [Symbol.iterator]: g });
const range = n => [...Array(n).keys()];
const map = f => it =>
fromGen(function*() {
for (const v of it) {
yield f(v);
}
});
const take = n => it =>
fromGen(function*() {
for (let v of it) {
if (--n < 0) break;
yield v;
}
});
const empty = [];
const append = it1 => it2 =>
fromGen(function*() {
yield* it1;
yield* it2;
});
// Outward spiral
const spiralOut = i => {
const n = Math.floor(i / 2) + 1;
const leg = range(n).map(x => [x, 0]);
const transform = p => add([n, 0])(rotate(Math.PI / 2)(p));
return fromGen(function*() {
yield* leg;
yield* map(transform)(spiralOut(i + 1));
});
};
// Test
{
const points = [...take(5)(spiralOut(0))];
console.log(JSON.stringify(points));
}
// Inward spiral
const spiralIn = ([w, h]) => {
const leg = range(w).map(x => [x, 0]);
const transform = p => add([w - 1, 1])(rotate(Math.PI / 2)(p));
return w * h === 0
? empty
: append(leg)(
fromGen(function*() {
yield* map(transform)(spiralIn([h - 1, w]));
})
);
};
// Test
{
const points = [...spiralIn([3, 3])];
console.log(JSON.stringify(points));
}
Here is a Python implementation based on the answer by #mako.
def spiral_iterator(iteration_limit=999):
x = 0
y = 0
layer = 1
leg = 0
iteration = 0
yield 0, 0
while iteration < iteration_limit:
iteration += 1
if leg == 0:
x += 1
if (x == layer):
leg += 1
elif leg == 1:
y += 1
if (y == layer):
leg += 1
elif leg == 2:
x -= 1
if -x == layer:
leg += 1
elif leg == 3:
y -= 1
if -y == layer:
leg = 0
layer += 1
yield x, y
Running this code:
for x, y in spiral_iterator(10):
print(x, y)
Yields:
0 0
1 0
1 1
0 1
-1 1
-1 0
-1 -1
0 -1
1 -1
2 -1
2 0
Try searching for either parametric or polar equations. Both are suitable to plotting spirally things. Here's a page that has plenty of examples, with pictures (and equations). It should give you some more ideas of what to look for.
I've done pretty much the same thin as a training exercise, with some differences in the output and the spiral orientation, and with an extra requirement, that the functions spatial complexity has to be O(1).
After think for a while I came to the idea that by knowing where does the spiral start and the position I was calculating the value for, I could simplify the problem by subtracting all the complete "circles" of the spiral, and then just calculate a simpler value.
Here is my implementation of that algorithm in ruby:
def print_spiral(n)
(0...n).each do |y|
(0...n).each do |x|
printf("%02d ", get_value(x, y, n))
end
print "\n"
end
end
def distance_to_border(x, y, n)
[x, y, n - 1 - x, n - 1 - y].min
end
def get_value(x, y, n)
dist = distance_to_border(x, y, n)
initial = n * n - 1
(0...dist).each do |i|
initial -= 2 * (n - 2 * i) + 2 * (n - 2 * i - 2)
end
x -= dist
y -= dist
n -= dist * 2
if y == 0 then
initial - x # If we are in the upper row
elsif y == n - 1 then
initial - n - (n - 2) - ((n - 1) - x) # If we are in the lower row
elsif x == n - 1 then
initial - n - y + 1# If we are in the right column
else
initial - 2 * n - (n - 2) - ((n - 1) - y - 1) # If we are in the left column
end
end
print_spiral 5
This is not exactly the thing you asked for, but I believe it'll help you to think your problem
I had a similar problem, but I didn't want to loop over the entire spiral each time to find the next new coordinate. The requirement is that you know your last coordinate.
Here is what I came up with with a lot of reading up on the other solutions:
function getNextCoord(coord) {
// required info
var x = coord.x,
y = coord.y,
level = Math.max(Math.abs(x), Math.abs(y));
delta = {x:0, y:0};
// calculate current direction (start up)
if (-x === level)
delta.y = 1; // going up
else if (y === level)
delta.x = 1; // going right
else if (x === level)
delta.y = -1; // going down
else if (-y === level)
delta.x = -1; // going left
// check if we need to turn down or left
if (x > 0 && (x === y || x === -y)) {
// change direction (clockwise)
delta = {x: delta.y,
y: -delta.x};
}
// move to next coordinate
x += delta.x;
y += delta.y;
return {x: x,
y: y};
}
coord = {x: 0, y: 0}
for (i = 0; i < 40; i++) {
console.log('['+ coord.x +', ' + coord.y + ']');
coord = getNextCoord(coord);
}
Still not sure if it is the most elegant solution. Perhaps some elegant maths could remove some of the if statements. Some limitations would be needing some modification to change spiral direction, doesn't take into account non-square spirals and can't spiral around a fixed coordinate.
I have an algorithm in java that outputs a similar output to yours, except that it prioritizes the number on the right, then the number on the left.
public static String[] rationals(int amount){
String[] numberList=new String[amount];
int currentNumberLeft=0;
int newNumberLeft=0;
int currentNumberRight=0;
int newNumberRight=0;
int state=1;
numberList[0]="("+newNumberLeft+","+newNumberRight+")";
boolean direction=false;
for(int count=1;count<amount;count++){
if(direction==true&&newNumberLeft==state){direction=false;state=(state<=0?(-state)+1:-state);}
else if(direction==false&&newNumberRight==state){direction=true;}
if(direction){newNumberLeft=currentNumberLeft+sign(state);}else{newNumberRight=currentNumberRight+sign(state);}
currentNumberLeft=newNumberLeft;
currentNumberRight=newNumberRight;
numberList[count]="("+newNumberLeft+","+newNumberRight+")";
}
return numberList;
}
Here's the algorithm. It rotates clockwise, but could easily rotate anticlockwise, with a few alterations. I made it in just under an hour.
// spiral_get_value(x,y);
sx = argument0;
sy = argument1;
a = max(sqrt(sqr(sx)),sqrt(sqr(sy)));
c = -b;
d = (b*2)+1;
us = (sy==c and sx !=c);
rs = (sx==b and sy !=c);
bs = (sy==b and sx !=b);
ls = (sx==c and sy !=b);
ra = rs*((b)*2);
ba = bs*((b)*4);
la = ls*((b)*6);
ax = (us*sx)+(bs*-sx);
ay = (rs*sy)+(ls*-sy);
add = ra+ba+la+ax+ay;
value = add+sqr(d-2)+b;
return(value);`
It will handle any x / y values (infinite).
It's written in GML (Game Maker Language), but the actual logic is sound in any programming language.
The single line algorithm only has 2 variables (sx and sy) for the x and y inputs. I basically expanded brackets, a lot. It makes it easier for you to paste it into notepad and change 'sx' for your x argument / variable name and 'sy' to your y argument / variable name.
`// spiral_get_value(x,y);
sx = argument0;
sy = argument1;
value = ((((sx==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sy !=(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy))))))*((max(sqrt(sqr(sx)),sqrt(sqr(sy))))*2))+(((sy==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sx !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*((max(sqrt(sqr(sx)),sqrt(sqr(sy))))*4))+(((sx==(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy)))) and sy !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*((max(sqrt(sqr(sx)),sqrt(sqr(sy))))*6))+((((sy==(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy)))) and sx !=(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy))))))*sx)+(((sy==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sx !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*-sx))+(((sx==max(sqrt(sqr(sx)),sqrt(sqr(sy))) and sy !=(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy))))))*sy)+(((sx==(-1*max(sqrt(sqr(sx)),sqrt(sqr(sy)))) and sy !=max(sqrt(sqr(sx)),sqrt(sqr(sy)))))*-sy))+sqr(((max(sqrt(sqr(sx)),sqrt(sqr(sy)))*2)+1)-2)+max(sqrt(sqr(sx)),sqrt(sqr(sy)));
return(value);`
I know the reply is awfully late :D but i hope it helps future visitors.

Resources