I want to compile a linux kernel such that the vmlinux has all the network drivers statically linked. I tried to disable CONFIG_MODULES, but that didnt do the trick.
To compile all your modules into the kernel statically, you have to change the appropriate configuration options from m to y.
Yes, all of them.
Related
I have an (old) embedded system for which I want to compile programs. I don't have the toolchain, so I want to create one.
The embedded system has an "ARM926EJ-S rev 5 (v5l)" CPU and "cat /proc/version" says that it runs "Linux version 2.6.20.7" with GCC 4.0.2.
I have heard that I have to include the kernel headers in the build process. I download the Linux kernel version 2.6.20 from kernel.org, extract all files and run "make headers_install ARCH=arm INSTALL_HDR_PATH=~/headers". Is this the correct way or do I need the header files of the specific kernel?
untar the kernel.
make mrproper
make ARCH=${arch} headers_check
e.g make ARCH=arm headers_check
make ARCH=${CLFS_ARCH} INSTALL_HDR_PATH=dest headers_install
This are the steps to get headers from kernel.
The purpose of kernel headers is -->C library and compiled programs needs to interact with the kernel
i.e for Available system calls and their numbers, Constant definitions, Data structures, etc.
Therefore, compiling the C library requires kernel headers, and many applications also require them.
do I need the header files of the specific kernel?
The kernel-to-userspace ABI is backward compatible
--> 1)Binaries generated with a toolchain using kernel headers older
than the running kernel will work without problem, but won't
be able to use the new system calls, data structures, etc.
-->2)Binaries generated with a toolchain using kernel headers newer
than the running kernel might work on if they don't use the
recent features, otherwise they will break.
--->3)Using the latest kernel headers is not necessary, unless access
to the new kernel features is needed
So in your case kernel version is "Linux version 2.6.20.7"
You can use kernel headers of Linux kernel version 2.6.20 or 2.6.21 from kernel.org.
does not create any problem in this case.
That should be fine if you're using the headers to build a libc
You should probably run make ARCH=arm headers_check beforehand too.
I use CentOS and it does not have support for L2TPv3 which was introduced in 2.6.35.
CentOS is at 2.6.32. How do I selectively patch just the L2TPv3 changes to my kernel?
Also, these are kernel modules. Would I need to run the modified kernel to be able to insmod these KOs?
Back porting features is a very non trivial task, not something that can easily be done casually. Thus, your best option is to look around whether somebody created the necessary patches for your kernel version.
Also, Linux kernel has no strict interface definitions when modules are concerned, thus it is very desirable that kernel and modules are compiled from the same source. Sometimes it is possible to successfully use "mismatched" modules with a given kernel, but rather frequently an attempt to do so results in various problems.
But if you will adventurous, try using modprobe -f. This will disable the module version checking and modprobe will try to squeeze the module in (even at a cost of crashing the system on spot).
I am trying to port my own driver to a Beagle board xm arm-cortex-A8. While porting I am trying to figuring out how the .ko file actually builds. In our Makefile we only have a command to build an.o file.
How is a .ko file built?
Using linux-2.6.38.8 kernel and trying to configure my driver for my kernel.
The kernel kbuild module document has lots of information on how to build an external module. If you have Raspberian or some other embedded ARM Linux, you will need to get the source package for your kernel. The process differs based on whether you are compiling on the same machine the module will run on, or if you are trying to build it on a PC (hopefully a Linux PC).
Please specify which way you need to build, if the kbuild module document doesn't explain things well enough.
I need to make some RPC calls from a module that resides in the kernel. I was wondering if glib could be used for this prurpose. Has anyone tried using the glib library inside the kernel? Is that even possible?
No, it's not possible to use userspace libraries in the kernel. Have a look at net/sunrpc/ directory for the kernel impletantion of RPC. It's used by the NFS kernel code.
how can I obtain runtime information about which version of kernel is running from inside linux kernel module code (kernel mode)?
By convention, Linux kernel module loading mechanism doesn't allow loading modules that were not compiled against the running kernel, so the "running kernel" you are referring to is most likely is already known at kernel module compilation time.
For retrieving the version string constant, older versions require you to include <linux/version.h>, others <linux/utsrelease.h>, and newer ones <generated/utsrelease.h>. If you really want to get more information at run-time, then utsname() function from linux/utsname.h is the most standard run-time interface.
The implementation of the virtual /proc/version procfs node uses utsname()->release.
If you want to condition the code based on kernel version in compile time, you can use a preprocessor block such as:
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,16)
...
#else
...
#endif
It allows you to compare against major/minor versions.
You can only safely build a module for any one kernel version at a time. This means that asking from a module at runtime is redundant.
You can find this out at build time, by looking at the value of UTS_RELEASE in recent kernels this is in <generated/utsrelease.h> amongst other ways of doing this.
Why can't I build a kernel module for any version?
Because the kernel module API is unstable by design as explained in the kernel tree at: Documentation/stable_api_nonsense.txt. The summary reads:
Executive Summary
-----------------
You think you want a stable kernel interface, but you really do not, and
you don't even know it. What you want is a stable running driver, and
you get that only if your driver is in the main kernel tree. You also
get lots of other good benefits if your driver is in the main kernel
tree, all of which has made Linux into such a strong, stable, and mature
operating system which is the reason you are using it in the first
place.
See also: How to build a Linux kernel module so that it is compatible with all kernel releases?
How to do it at compile time was asked at: Is there a macro definition to check the Linux kernel version?