Can every recursive algorithm be improved with dynamic programming? - algorithm

I am a first year undergraduate CSc student who is looking to get into competitive programming.
Recursion involves defining and solving sub problems. As I understand, top down dynamic programming (dp) involves memoizing the solutions to sub problems to reduce the time complexity of the algorithm.
Can top down dp be used to improve the efficiency of every recursive algorithm with overlapping sub problems? Where would dp fail to work and how can I identify this?

The short answer is: Yes.
However, there are some constraints. The most obvious one is that recursive calls must overlap. I.e. during the execution of an algorithm, the recursive function must be called multiple times with the same parameters. This lets you truncate the recursion tree by memoization. So you can always use memoization to reduce the number of calls.
However, this reduction of calls comes with a price. You need to store the results somewhere. The next obvious constraint is that you need to have enough memory. This comes with a not-so obvious constraint. Memory access always requires some time. You first need to find where the result is stored and then maybe even copy it to some location. So in some cases, it might be faster to let the recursion calculate the result instead of loading it from somewhere. But this is very implementation-specific and can even depend on the operating system and hardware setup.

Related

Space complexity comparison between recursion and dynamic programming, which is better?

I've seen that the space complexity of recursion depends on space used in call stack. And dynamic programming uses extra space to improve time complexity. So does recursion is better than dynamic programming in terms of space complexity?
Not if the dynamical programming is done optimally. It just makes explicit the storage requirements which are used anyway by recursive algorithm implicitly on the stack. It doesn't add any extra space needlessly (unless it's implemented suboptimally).
Consider Fibonacci calculation. The recurrence formula seem to only require two values, Fib(n+2) = Fib(n+1) + Fib(n), but due to recursion the calculation will actually use O(n) space on the stack anyway. Due to the double recursion the time though will be exponential, whereas with the dynamic programming filling the same space from the ground up both space and time will be linear.
If you pick your favorite problem that dynamic programming is appropriate for, such as subset-sum, there are generally three approaches.
Recursion
Bottom up dynamic programming.
Top down dynamic programming, aka recursion with memoization.
In terms of time complexity, recursion is usually worse by an exponential factor, and the other two are equivalent. (That is why we do dynamic programming.)
In terms of space requirements, recursion is usually the best (just have to track the current attempt at a solution), and often (though not always) bottom up is better than top-down by a factor of n (the size of your problem). That is because you know when you're done with a particular piece of data and can throw it away.
In terms of ease of writing the code, recursion is usually easiest, followed by top-down, followed by bottom-up. (Though the memory savings of bottom up make it worthwhile to learn.)
Now you may ask, are there other tradeoffs possible between memory and performance? It isn't done very often, but there is. Do top down and use an LRU cache (when the cache gets too big you discard the least recently used value from it). You will get a different tradeoff, though figuring out what the tradeoff is is kind of complicated.

One should choose recursion over iteration?

Why should one choose recursion over iteration, when a solution has the same time complexity for both cases but better space complexity for iterative?
Here's a particular example of a case where there are extra considerations. Tree search algorithms can be defined recursively (because each subtree of a tree is a tree) or iteratively (with a stack). However, while a recursive search can work perfectly for finding the first leaf with a certain property or searching over all leaves, it does not lend itself to producing a well-behaved iterator: an object or function state that returns a leaf, and later when called again returns the next leaf, etc. In an iterative design the search stack can be stored as a static member of the object or function, but in a recursive design the call stack is lost whenever the function returns and is difficult or expensive to recreate.
Iteration is more difficult to understand in some algorithms. An algorithm that can naturally be expressed recursively may not be as easy to understand if expressed iteratively. It can also be difficult to convert a recursive algorithm into an iterative algorithm, and verifying that the algorithms are equivalent can also be difficult.
Recursion allows you to allocate additional automatic objects at each function call. The iterative alternative is to repeatedly dynamically allocate or resize memory blocks. On many platforms automatic allocation is much faster, to the point that its speed bonus outweighs the speed penalty and storage cost of recursive calls. (But some platforms don't support allocation of large amounts of automatic data, as mentioned above; it's a trade-off.)
recursion is very beneficial when the iterative solutions requires that you simulate recursion with a stack. Recursion acknowledges that the compiler already manages a stack to accomplish precisely what you need. When you start managing your own, not only are you likely re-introducing the function call overhead you intended to avoid; but you're re-inventing a wheel (with plenty of room for bugs) that already exists in a pretty bug-free form.
Some Benefits for Recursion
Code is Perfect Elegant (compared to loops)
very useful in backtracking data structures like LinkedList, Binary Search Trees as the recursion works by calling itself in addition stack made especially for this recursive calls and each call chained by its previous one

when to use bottom-up DP and when to use top-down DP

I have leant that two ways of DP, but I am confused now. How we choose in different condition? And I find that in most of time top-down is more natural for me. Can anyone tell me that how to make the choice.
PS: I have read this post older post but still get confused. Need help. Don't identify my questions as duplication. I have mentioned that they are different. I hope to know how to choose and when to consider problem from top-down or bottom-up way.
To make it simple, I will explain based on my summary from some sources
Top-down: something looks like: a(n) = a(n-1) + a(n-2). With this equation, you can implement with about 4-5 lines of code by making the function a call itself. Its advantage, as you said, is quite intuitive to most developers but it costs more space (memory stack) to execute.
Bottom-up: you first calculate a(0) then a(1), and save it to some array (for instance), then you continuously savea(i) = a(i-1) + a(i-2). With this approach, you can significantly improve the performance of your code. And with big n, you can avoid stack overflow.
A slightly longer answer, but I have tried to explain my own approach to dynamic programming and what I have come to understand after solving such questions. I hope future users find it helpful. Please do feel free to comment and discuss:
A top-down solution comes more naturally when thinking about a dynamic programming problem. You start with the end result and try to figure out the ways you could have gotten there. For example, for fib(n), we know that we could have gotten here only through fib(n-1) and fib(n-2). So we call the function recursively again to calculate the answer for these two cases, which goes deeper and deeper into the tree until the base case is reached. The answer is then built back up until all the stacks are popped off and we get the final result.
To reduce duplicate calculations, we use a cache that stores a new result and returns it if the function tries to calculate it again. So, if you imagine a tree, the function call does not have to go all the way down to the leaves, it already has the answer and so it returns it. This is called memoization and is usually associated with the top-down approach.
Now, one important point I think for the bottom-up approach is that you must know the order in which the final solution has to be built. In the top-down case, you just keep breaking one thing down into many but in the bottom-up case, you must know the number and order of states that need to be involved in a calculation to go from one level to the next. In some simpler problems (eg. fib(n)), this is easy to see, but for more complex cases, it does not lend itself naturally. The approach I usually follow is to think top-down, break the final case into previous states and try to find a pattern or order to then be able to build it back up.
Regarding when to choose either of those, I would suggest the approach above to identify how the states are related to each other and being built. One important distinction you can find this way is how many calculations are really needed and how a lot might just be redundant. In the bottom up case, you have to fill an entire level before you go to the next. However, in the top down case, an entire subtree can be skipped if not needed and in such a way, a lot of extra calculations can be saved.
Hence, the choice obviously depends on the problem, but also on the inter-relation between states. It is usually the case that bottom-up is recommended because it saves you stack space as compared to the recursive approach. However, if you feel the recursion isn't too deep but is very wide and can lead to a lot of unnecessary calculations by tabularization, you can then go for top-down approach with memoization.
For example, in this question: https://leetcode.com/problems/partition-equal-subset-sum/, if you see the discussions, it is mentioned that top-down is faster than bottom-up, basically, the binary tree approach with a cache versus the knapsack bottom up build-up. I leave it as an exercise to understand the relation between the states.
Bottom-up and Top-down DP approaches are the same for many problems in terms of time and space complexity. Difference are that, bottom-up a little bit faster, because you don't need overhead for recursion and, yes, top-down more intuitive and natural.
But, real advantage of Top-bottom approach can be on some small sets of tasks, where you don't need to calculate answer for all smaller subtasks! And you can reduce time complexity in this cases.
For example you can use Top-down approach with memorization for finding N-th Fibonacci number, where the sequence is defined as a[n]=a[n-1]+a[n-2] So, you have both O(N) time for calculating it (I don't compare with O(logN) solution for finding this number). But look at the sequence a[n]=a[n/2]+a[n/2-1] with some edge cases for small N. In botton up approach you can't do it faster than O(N) where top-down algorithm will work with complexity O(logN) (or maybe some poly-logarithmic complexity, I am not sure)
To add on to the previous answers,
Optimal time:
if all sub-problems need to be solved
→ bottom-up approach
else
→ top-down approach
Optimal space:
Bottom-up approach
The question Nikhil_10 linked (i.e https://leetcode.com/problems/partition-equal-subset-sum/) doesn't require all subproblems to be solved. Hence the top-down approach is more optimal.
If you like the top-down natural then use it if you know you can implement it. bottom-up is faster than the top-down one. Sometimes Bottom-ups are easier and most of the times the bottom-up are easy. Depending on your situation make your decision.

Memoization or Tabulation approach for Dynamic programming

There are many problems that can be solved using Dynamic programming e.g. Longest increasing subsequence. This problem can be solved by using 2 approaches
Memoization (Top Down) - Using recursion to solve the sub-problem and storing the result in some hash table.
Tabulation (Bottom Up) - Using Iterative approach to solve the problem by solving the smaller sub-problems first and then using it during the execution of bigger problem.
My question is which is better approach in terms of time and space complexity?
Short answer: it depends on the problem!
Memoization usually requires more code and is less straightforward, but has computational advantages in some problems, mainly those which you do not need to compute all the values for the whole matrix to reach the answer.
Tabulation is more straightforward, but may compute unnecessary values. If you do need to compute all the values, this method is usually faster, though, because of the smaller overhead.
First understand what is dynamic programming?
If a problem at hand can be broken down to sub-problems whose solutions are also optimal and can be combined to reach solution of original/bigger problem. For such problems, we can apply dynamic programming.
It's way of solving a problem by storing the results of sub-problems in program memory and reuse it instead of recalculating it at later stage.
Remember the ideal case of dynamic programming usage is, when you can reuse the solutions of sub-problems more than one time, otherwise, there is no point in storing the result.
Now, dynamic programming can be applied in bottom-up approach(Tabulation) and top-down approach(Memoization).
Tabulation: We start with calculating solutions to smallest sub-problem and progress one level up at a time. Basically follow bottom-up approach.
Here note, that we are exhaustively finding solutions for each of the sub-problems, without knowing if they are really neeeded in future.
Memoization: We start with the original problem and keep breaking it one level down till the base case whose solution we know. In most cases, such breaking down(top-down approach) is recursive. Hence, time taken is slower if problem is using each steps sub-solutions due to recursive calls. But, in case when all sub-solutions are not needed then, Memoization performs better than Tabulation.
I found this short video quite helpful: https://youtu.be/p4VRynhZYIE
Asymptotically a dynamic programming implementation that is top down is the same as going bottom up, assuming you're using the same recurrence relation. However, bottom up is generally more efficient because of the overhead of recursion which is used in memoization.
If the problem has overlapping sub-problems property then use Memoization, else it depends on the problem

How to compute exact complexity of an algorithm?

Without resorting to asymptotic notation, is tedious step counting the only way to get the time complexity of an algorithm? And without step count of each line of code can we arrive at a big-O representation of any program?
Details: trying to find out the complexity of several numerical analysis algorithms to decide which will be best suited for solving a particular problem.
E.g. - from among Regula-Falsi or Newton-Rhapson method for solving eqns, intention is to evaluate the exact complexity of each method and then decide (putting value of 'n' or whatever arguments there are) which method is less complex.
The only way --- not the "easy" or hard way but the only reasonable way --- to find the exact complexity of a complicated algorithm is to profile it. A modern implementation of an algorithm has a complex interaction with numerical libraries and with the CPU and its floating point unit. For instance in-cache memory access is much faster than out-of-cache memory access, and on top of that there may be more than one level of cache. Counting steps is really much more suitable to the asymptotic complexity that you say isn't enough for your purpose.
But, if you did want to count steps automatically, there are also ways to do that. You can add a counter increment command (like "bloof++;" in C) to every line of code, and then display the value at the end.
You should also know about the more refined time complexity expression, f(n)*(1+o(1)), that is also useful for analytical calculations. For instance n^2+2*n+7 simplifies to n^2*(1+o(1)). If the constant factor is what bothers you about usual asymptotic notation O(f(n)), this refinement is a way to keep track of it and still throw out negligible terms.
The 'easy way' is to simulate it. Try your algorithms with lots of values of n and lots of different data, plot the results then match the curve on the graph to an equation.
Your results may not be strictly correct and they're only as valid as your ability to generate good test data but for most cases this will work.
E.g. - from among Regula-Falsi or Newton-Rhapson method for solving eqns, intention is to evaluate the exact complexity of each method and then decide (putting value of 'n' or whatever arguments there are) which method is less complex.
I don't think it's possible to answer this question in general for nonlinear solvers. You could an exact number of computations per iteration, but you're never going to know in general how many iterations it will take for each solver to converge. There are other complications like needing the Jacobian for Newton's which could make computing the complexity even more difficult.
To sum up, the most efficient nonlinear solver is always dependent on the problem you're solving. If the variety of problems you're solving is very limited, doing a bunch of experiments with different solvers and measuring the number of iterations and CPU time will probably give you more useful information.

Resources