Can someone please help me solve this problem?
We have a set E of roads, a set H of highways, and a set V of different cities. We also have a cost x(i) associated to each road i and a cost y(i) associated to each highways i. We want to build the roads to connect the cities, with the conditions that there is always a path between any pair of cities and that we can build at most one highway, which may be cheaper than a road.
Set E and set H are different, and their respective costs are unrelated.
Design an algorithm to build the roads (with at most one highway) that minimize the total cost.
So, what we have is a fully connected graph of edges.
Solution steps:
Find the minimum spanning tree for the roads alone and consider it as the minimum cost.
Add one highway to the roads graph an calculate the minimum spanning cost tree again.
compare step 2 cost with the minimum cost to replace it if its smaller.
remove that high way.
go back to step 2 and go the steps again for each highway.
O(nm) = m*mst_cost(n)
Using Prim's or Kruskal's to build an MST: O(E log V).
The problem is the constraint of at most 1 highway.
1. Naive method to solve this:
For each possible highway, build the MST from scratch.
Time complexity of this solution: O(H E log V)
2. Alternative
Idea: If you build an MST, you can refine the MST with a better MST if you have an additional available edge you have not considered before.
Suppose the new edge connects (u,v). If you use this edge, you can remove the most expensive edge in the path between vertices u and v in the MST. You can find the path naively in O(V) time.
Using this idea, the time complexity is the cost to build the initial MST O(E log V) and the time to try to refine the MST with each of the H highways. The total algorithmic complexity is therefore O(E log V + H V), which is better than the first solution.
3. Optimized refinement
Instead of doing a naive path-searching method with the second method, we can find a faster way to do this. One related problem is LCA (lowest-common ancestor). A good way of solving LCA is using jump pointers. First you root hte tree, then each vertex will have jump pointers towards the root (1 step, 2 steps, 4 steps etc.) Pre-processing might cost O(V log V) time, and finding the LCA of 2 vertices is O(log V) worst case (although it is actually O(log (depth of tree)) which is usually better).
Once you have found the LCA, that implicitly gives you the path between vertices u and v. However, to find the most expensive edge to delete could be expensive since traversing the path is costly.
In 1-dimensional problems, the range-maximum-query (RMQ) can be employed. This uses a segment tree to solve the RMQ in O(log N) time.
Instead of a 1-dimensional space (like an array), we have a tree. However, we can apply the same idea, and build a segment tree-like structure. In fact, this is equivalent to bundling an extra piece of information with each jump pointer. To find the LCA, each vertex in the tree will have log(tree depth) jump pointers towards the root. We can bundle the maximum edge weight of the edges we jump over with the jump pointer. The cost of adding this information is the same as creating the jump pointer in the first place. Therefore, a slight refinement to the LCA algorithm allows us to find the maximum edge weight on the path between vertices u and v in O(log (depth)) time.
Finally, putting it together, the algorithmic complexity of this 3rd solution is O(E log V + H log V) or equivalently O((E+H) log V).
Related
I know that there are a ton of questions out there about the time complexity of BFS which is : O(V+E)
However I still struggle to understand why is the time complexity O(V+E) and not O(V*E)
I know that O(V+E) stands for O(max[V,E]) and my only guess is that it has something to do with the density of the graph and not with the algorithm itself unlike say Merge Sort where it's time complexity is always O(n*logn).
Examples I've thought of are :
A Directed Graph with |E| = |V|-1 and yeah the time complexity will be O(V)
A Directed Graph with |E| = |V|*|V-1| and the complexity would in fact be O(|E|) = O(|V|*|V|) as each vertex has an outgoing edge to every other vertex besides itself
Am I in the right direction? Any insight would be really helpful.
Your "examples of thought" illustrate that the complexity is not O(V*E), but O(E). True, E can be a large number in comparison with V, but it doesn't matter when you say the complexity is O(E).
When the graph is connected, then you can always say it is O(E). The reason to include V in the time complexity, is to cover for the graphs that have many more vertices than edges (and thus are disconnected): the BFS algorithm will not only have to visit all edges, but also all vertices, including those that have no edges, just to detect that they don't have edges. And so we must say O(V+E).
The complexity comes off easily if you walk through the algorithm. Let Q be the FIFO queue where initially it contains the source node. BFS basically does the following
while Q not empty
pop u from Q
for each adjacency v of u
if v is not marked
mark v
push v into Q
Since each node is added once and removed once then the while loop is done O(V) times. Also each time we pop u we perform |adj[u]| operations where |adj[u]| is the number of
adjacencies of u.
Therefore the total complexity is Sum (1+|adj[u]|) over all V which is O(V+E) since the sum of adjacencies is O(E) (2E for undirected graph and E for a directed one)
Consider a situation when you have a tree, maybe even with cycles, you start search from the root and your target is the last leaf of your tree. In this case you will traverse all the edges before you get into your destination.
E.g.
0 - 1
1 - 2
0 - 2
0 - 3
In this scenario you will check 4 edges before you actually find a node #3.
It depends on how the adjacency list is implemented. A properly implemented adjacency list is a list/array of vertices with a list of related edges attached to each vertex entry.
The key is that the edge entries point directly to their corresponding vertex array/list entry, they never have to search through the vertex array/list for a matching entry, they can just look it up directly. This insures that the total number of edge accesses is 2E and the total number of vertex accesses is V+2E. This makes the total time O(E+V).
In improperly implemented adjacency lists, the vertex array/list is not directly indexed, so to go from an edge entry to a vertex entry you have to search through the vertex list which is O(V), which means that the total time is O(E*V).
I was asked the following question in an interview and I am unable to find an efficient solution.
Here is the problem:
We want to build a network and we are given c nodes/cities and D possible edges/connections made by roads. Edges are bidirectional and we know the cost of the edge. The costs of the edges can be represented as d[i,j] which denotes the cost of the edge i-j. Note not all c nodes can be directly connected to each other (D is the set of possible edges).
Now we are given a list of k potential edges/connections that have no cost. However, you can only choose one edge in the list of k edges to use (like getting free funding to build an airport between two cities).
So the question is... find the set of roads (and the one free airport) that minimizes total cost required to build the network connecting all cities in an efficient runtime.
So in short, solve a minimum spanning tree problem but where you can choose 1 edge in a list of k potential edges to be free of cost. I'm unsure how to solve... I've tried finding all the spanning trees in order of increasing cost and choosing the lowest cost, but I'm still challenged on how to consider the one free edge from the list of k potential free edges. I've also tried finding the MST of the D potential connections and then adjusting it according the the options in k to get a result.
Thank you for any help!
One idea would be to treat your favorite MST algorithm as a black box and to think about changing the edges in the graph before asking for the MST. For example, you could try something like this:
for each edge in the list of possible free edges:
make the graph G' formed by setting that edge cost to 0.
compute the MST of G'
return the cheapest MST out of all the ones generated this way
The runtime of this approach is O(kT(m, n)), where k is the number of edges to test and T(m, n) is the cost of computing an MST using your favorite black-box algorithm.
We can do better than this. There's a well-known problem of the following form:
Suppose you have an MST T for a graph G. You then reduce the cost of some edge {u, v}. Find an MST T' in the new graph G'.
There are many algorithms for solving this problem efficiently. Here's one:
Run a DFS in T starting at u until you find v.
If the heaviest edge on the path found this way costs more than {u, v}:
Delete that edge.
Add {u, v} to the spanning tree.
Return the resulting tree T'.
(Proving that this works is tedious but doable.) This would give an algorithm of cost O(T(m, n) + kn), since you would be building an initial MST (time T(m, n)), then doing k runs of DFS in a tree with n nodes.
However, this can potentially be improved even further if you're okay using some more advanced algorithms. The paper "On Cartesian Trees and Range Minimum Queries" by Demaine et al shows that in O(n) time, it is possible to preprocess a minimum spanning tree so that, in time O(1), queries of the form "what is the lowest-cost edge on the path in this tree between nodes u and v?" in time O(1). You could therefore build this structure instead of doing a DFS to find the bottleneck edge between u and v, reducing the overall runtime to O(T(m, n) + n + k). Given that T(m, n) is very low (the best known bound is O(m α(m)), where α(m) is the Ackermann inverse function and is less than five for all inputs in the feasible univers), this is asymptotically a very quick algorithm!
First generate a MST. Now, if you add a free edge, you will create exactly one cycle. You could then remove the heaviest edge in the cycle to get a cheaper tree.
To find the best tree you can make by adding one free edge, you need to find the heaviest edge in the MST that you could replace with a free one.
You can do that by testing one free edge at a time:
Pick a free edge
Find the lowest common ancestor in the tree (from an arbitrary root) of its adjacent vertices
Remember the heaviest edge on the path between the free edge vertices
When you're done, you know which free edge to use -- it's the one associated with the heaviest tree edge, and you know which edge it replaces.
In order to make steps (2) and (3) faster, you can remember the depth of each node and connect it to multiple ancestors like a skip list. You can then do those steps in O(log |V|) time, leading to a total complexity of O( (|E|+k) log |V| ), which is pretty good.
EDIT: Even Easier Way
After thinking about this a bit, it seems there's a super easy way to figure out which free edge to use and which MST edge to replace.
Disregarding the k possible free edges, you build the MST from the other edges using Kruskal's algorithm, but you modify the usual disjoint set data structure as follows:
Use union by size or rank, but not path compression. Every union operation will then establish exactly one link, and take O(log N) time, and all path lengths will be at most O(log N) long.
For each link, remember the index of the edge that caused it to be created.
For each possible free edge, then, you can walk up the links in the disjoint set structure to find out exactly at which point its endpoints were connected into the same connected component. You get the index of the last required edge, i.e., the one it would replace, and the free edge with the greatest replacement target index is the one you should use.
I have to solve a question that is something like this:
I am given a number N which represents the number of points I have. Each point has two coordinates: X and Y.
I can find the distance between two points with the following formula:
abs(x2-x1)+abs(y2-y1),
(x1,y1) being the coordinates of the first point, (x2,y2) the coordinates of the second point and abs() being the absolute value.
I have to find the minimum spanning tree, meaning I must have all my points connected with the sum of the edges being minimal. Prim's algorithm is good, but it is too slow. I read that I can make it faster using a heap but I didn't find any article that explains how to do that.
Can anyone explain me how Prim's algorithm works with a heap(some sample code would be good but not neccesarily), please?
It is possible to solve this problem efficiently(in O(n log n) time), but it is not that easy. Just using the Prim's algorithm with a heap does not help(it actually makes it even slower), because its time complexity is O(E log V), which is O(n^2 * log n) in this case.
However, you can use the Delaunay triangulation to reduce the number of edges in the graph. The Delaunay triangulation graph is planar, so it has linear number of edges. That's why running the Prim's algorithm with a heap on it gives O(n log n) time complexity(there are O(n) edges and n vertices). You can read more about it here(covering this algorithm in details and proving its correctness would make my answer way too long): http://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree. Note that even though the article is about the Euclidian mst, the approach for your case is essentially the same(it is possible to build the Delaunay triangulation for manhattan distance efficiently, too).
A description of the Prim's algorithm with a heap itself is already present in two other answers to your question.
From the Wikipedia article on Prim's algorithm:
[S]toring vertices instead of edges can improve it still further. The heap should order the vertices by the smallest edge-weight that connects them to any vertex in the partially constructed minimum spanning tree (MST) (or infinity if no such edge exists). Every time a vertex v is chosen and added to the MST, a decrease-key operation is performed on all vertices w outside the partial MST such that v is connected to w, setting the key to the minimum of its previous value and the edge cost of (v,w).
While it was pointed out that Prim's with a heap is O(E log V), which is O(n^2 log n) in the worst case, I can provide what makes the heap faster in cases other than that worst case, since that has still not been answered.
What makes Prim's so costly at O(V^2) is the necessary updating each iteration in the algorithm. In general, Prim's works by keeping a table of your vertices with the lowest length to other vertices and picking the cheapest vertex to add to your growing tree until all are added. Every time you add a vertex, you must then go back to your table and update any vertices that can now be accessed with less weight. You then must walk back all the way through your table to decide which vertex is cheapest to add. This setup - having to pick the next vertex (O(V)) V times - gives the O(V^2).
The heap is able to help this running time is all cases besides the worst case because it fixes this bottleneck. By working with a minimum heap, you can access the minimum weight in consideration in O(1). Additionally, it costs O(log V) to fix a heap after adding a number to it to maintain its properties, which is done E times for O(E log V) to maintain the heap for Prim's. This becomes the new bottleneck, which is what gives rise to the final running time of O(E log V).
So, depending on how much you know about your data, Prim's with a heap can certainly be more efficient than without!
I came across this question in which it was required to calculate in-degree of each node of a graph from its adjacency list representation.
for each u
for each Adj[i] where i!=u
if (i,u) ∈ E
in-degree[u]+=1
Now according to me its time complexity should be O(|V||E|+|V|^2) but the solution I referred instead described it to be equal to O(|V||E|).
Please help and tell me which one is correct.
Rather than O(|V||E|), the complexity of computing indegrees is O(|E|). Let us consider the following pseudocode for computing indegrees of each node:
for each u
indegree[u] = 0;
for each u
for each v \in Adj[u]
indegree[v]++;
First loop has linear complexity O(|V|). For the second part: for each v, the innermost loop executes at most |E| times, while the outermost loop executes |V| times. Therefore the second part appears to have complexity O(|V||E|). In fact, the code executes an operation once for each edge, so a more accurate complexity is O(|E|).
According to http://www.cs.yale.edu/homes/aspnes/pinewiki/C(2f)Graphs.html, Section 4.2, with an adjacency list representation,
Finding predecessors of a node u is extremely expensive, requiring looking through every list of every node in time O(n+m), where m is the total number of edges.
So, in the notation used here, the time complexity of computing the in-degree of a node is O(|V| + |E|).
This can be reduced at the cost of additional space of using extra space, however. The Wiki also states that
adding a second copy of the graph with reversed edges lets us find all predecessors of u in O(d-(u)) time, where d-(u) is u's in-degree.
An example of a package which implements this approach is the Python package Networkx. As you can see from the constructor of the DiGraph object for directional graphs, networkx keeps track of both self._succ and self._pred, which are dictionaries representing the successors and predecessors of each node, respectively. This allows it to compute each node's in_degree efficiently.
O(|V|+|E|) is the correct answer, because you visit each vertex in O(|V|) and each time you visit a fraction of the edges so O(|E|) in total, also usually |E|>>|V| so O(|E|) is also correct
Here is an excise:
Let G be a weighted directed graph with n vertices and m edges, where all edges have positive weight. A directed cycle is a directed path that starts and ends at the same vertex and contains at least one edge. Give an O(n^3) algorithm to find a directed cycle in G of minimum total weight. Partial credit will be given for an O((n^2)*m) algorithm.
Here is my algorithm.
I do a DFS. Each time when I find a back edge, I know I've got a directed cycle.
Then I will temporarily go backwards along the parent array (until I travel through all vertices in the cycle) and calculate the total weights.
Then I compare the total weight of this cycle with min. min always takes the minimum total weights. After the DFS finishes, our minimum directed cycle is also found.
Ok, then about the time complexity.
To be honest, I don't know the time complexity of my algorithm.
For DFS, the traversal takes O(m+n) (if m is the number of edges, and n is the number of vertices). For each vertex, it might point back to one of its ancestors and thus forms a cycle. When a cycle is found, it takes O(n) to summarise the total weights.
So I think the total time is O(m+n*n). But obviously it is wrong, as stated in the excise the optimal time is O(n^3) and the normal time is O(m*n^2).
Can anyone help me with:
Is my algorithm correct?
What is the time complexity if my algorithm is correct?
Is there any better algorithm for this problem?
You can use Floyd-Warshall algorithm here.
The Floyd-Warshall algorithm finds shortest path between all pairs of vertices.
The algorithm is then very simple, go over all pairs (u,v), and find the pair that minimized dist(u,v)+dist(v,u), since this pair indicates on a cycle from u to u with weight dist(u,v)+dist(v,u). If the graph also allows self-loops (an edge (u,u)) , you will also need to check them alone, because those cycles (and only them) were not checked by the algorithm.
pseudo code:
run Floyd Warshall on the graph
min <- infinity
vertex <- None
for each pair of vertices u,v
if (dist(u,v) + dist(v,u) < min):
min <- dist(u,v) + dist(v,u)
pair <- (u,v)
return path(u,v) + path(v,u)
path(u,v) + path(v,u) is actually the path found from u to v and then from v to u, which is a cycle.
The algorithm run time is O(n^3), since floyd-warshall is the bottle neck, since the loop takes O(n^2) time.
I think correctness in here is trivial, but let me know if you disagree with me and I'll try to explain it better.
Is my algorithm correct?
No. Let me give a counter example. Imagine you start DFS from u, there are two paths p1 and p2 from u to v and 1 path p3 from v back to u, p1 is shorter than p2.
Assume you start by taking the p2 path to v, and walk back to u by path p3. One cycle found but apparently it's not minimum. Then you continue exploring u by taking the p1 path, but since v is fully explored, the DFS ends without finding the minimum cycle.
"For each vertex, it might point back to one of its ancestors and thus forms a cycle"
I think it might point back to any of its ancestors which means N
Also, how are u going to mark vertexes when you came out of its dfs, you may come there again from other vertex and its going to be another cycle. So this is not (n+m) dfs anymore.
So ur algo is incomplete
same here
3.
During one dfs, I think the vertex should be either unseen, or check, and for checked u can store the minimum weight for the path to the starting vertex. So if on some other stage u find an edge to that vertex u don't have to search for this path any more.
This dfs will find the minimum directed cycle containing first vertex. and it's O(n^2) (O(n+m) if u store the graph as list)
So if to do it from any other vertex its gonna be O(n^3) (O(n*(n+m))
Sorry, for my english and I'm not good at terminology
I did a similar kind of thing but i did not use any visited array for dfs (which was needed for my algorithm to work correctly) and hence i realised that my algorithm was of exponential complexity.
Since, you are finding all cycles it is not possible to find all cycles in less than exponential time since there can be 2^(e-v+1) cycles.