How do live sessions work (with multiple users)? - session

This has been on my mind for a while now, and I guess I am asking it now. My question is how do live sessions work? For instance, a live chat session, or the live multi-user updater on JSfiddle.net. How do both items update instantly? In the case of the live chat, is it updating from AJAX to the server every second?
Sorry if my question is misunderstood, but my question is simply, how do live sessions work with multiple users?
EDIT
How does Stack Overflow do it? Every time something happens I get a notification, is that updating to the database every second to see if something happens, or is there a better (more efficient) way of going about doing this?

There is a couple of ways of doing it.
The most common way people are nowadays doing it is through websockets. You can just google that term and learn about it. Basically the webserver notifies you through a socket whenever it decides to.
Another way is polling. People used to do it like this back in the day. Polling is pretty much the dumb way: constantly (or every other second or so) sending an ajax request to the webserver asking if there is any new content.
Another interesting way is sending a get request that stays open for a certain amount of time, even after it gets a response. It sort of functions like a stream that you opened to a file or connection, it stays open untill you close it (or untill some other condition). I'm not too familiar with this method, but I know Google Drive uses it for it's multi-user file editing. Just open two sessions to the same Google Drive document and inspect the page. You'll see in the console that every time you type a block of text it'll send a post, and you'll have at least 1 get request pending at all times. At one point it'll close, and right away a new one starts.
So in short: Websockets, Polling, and whatever you call that last method.

Related

Windows Named Pipes connections

I have search high and low for this answer. Can one code up a Named Pipes server where the connection that a client makes is persistent until you close the applications? This would be in C/C++. Not asking any one to actually do this, as I am capable. To explain in a little more detail if my question is not clear, I want to be able to have the client connect to the server and then be able to pass data back and forth without having to kill the connection at the end of each data transaction and then start a new one again for the next. It seams that in every example I have seen or read, the transaction only lasted for that one data exchange. That seems wasteful and extremely time consuming. Then I want to thread it so I can have up to 8 clients on the same named pipe. If you know of example code that does this, that would be great also. Already read the Microsoft examples, and they seem to be single data exchanges with new connections every time.
My confusion lies with the readfile() and writefile() functions. They need the pipe handle and pointers to the data structures just like a file R/W on the hard drive. Those files can be opened at program start, used, and then finally closed just before you exit your application. There are risks to doing this, but sometimes necessary. So I want my server application to be in control not the clients.
Thanks in advance. I will answer any questions if this is not clear to you.
I am not surprised at your answers. I was really wanting a way to keep the connection open per instance, but since this is not how pipes work, I get it. I have devised a better way to make my applications talk to each other. I originally had one server and many clients, so I turned that around and now have one client and many servers each with a different pipe name. Since my client, that was the server, did most of the initiating of the messages, I can now manage better they way I send and request the data via messages/pipes. The only draw back is not giving the data to all of them at once, but what is a few microseconds amount friends. Please let me know if this will not work as I expect it will, before I spend a lot of time on the code. Thanks. Any suggestions are welcomed.

how to handle UI actions on front-end responsively while waiting for the processing in back-end?

Use a StackOverflow Q&A thread as an example - when you vote up, vote down, or favorite a question, you can see the UI quickly respond to that action with changes in the # of up-votes on the side.
How can we achieve that effect? If send every of such action to back-end for processing and use the returned response to update UI, you will see a slow update and feel the glitches. But if put some of the logic on the front-end, you will also need to take care of the fraud/abuse etc before reflecting the action on UI, i.e - before changing the # of up-votes, don't you need to make sure that's a valid click by an valid user first?
You make sure that a valid user is using the app before a user clicks on anything. This is done through authentication, and it must include various protection mechanisms against malicious users.
When a user clicks, a call is made to a server. In a properly architected app this call is lightweight, and the server responds very quickly. I don't know why you believe that "you will see a slow update and feel the glitches". Adding an upvote to the database should take a few hundred milliseconds at most (including the roundtrip from the client), especially if the commit is asynchronous or a memcache is used.
If a database update results in a need to do some complex operations, typically these operations are not done right away. For example, a cron job may run periodically to compute new rankings, etc., precisely because you do not want every user to wait. Alternatively, a task is created and put in a task queue to be executed when resources are available - again to make sure that a user does not wait.
In some apps a UI is updated immediately after the call to the server is made, before any response from a server arrives. You can do it when the consequences of a failed call are negligible. For example, if an upvote fails to be saved in the database, it's not a disaster, especially if it happens once in a million tries. Again, in a properly architected app calls fail extremely rarely.
This is a decision that an app developer needs to make. I would not update a UI before a server response if such an update may lead a user to believe that some other action is now possible. For example, if a user uploads a new photo, I would not show icons to edit or share this photo until I know that the photo is safely saved.

AJAX Polling Question - Blocking Or Frequent?

I have a web application that relies on very "live" data - so it needs an update every 1 second if something has changed.
I was wondering what the pros and cons of the following solutions are.
Solution 1 - Poll A Lot
So every 1 second, I send a request to the server and get back some data. Once I have the data, I wait for 1 second before doing it all again. I would detect client-side if the state had changed and take action appropriately.
Solution 2 - Block A Lot
So I start a request to the server that will time-out after 30 seconds. The server keeps an eye on the data on the server by checking it once per second. If the server notices the data has changed it sends the data back to the client, which takes action appropriately.
Scenario
Essentially, the data is reasonably small in size, but changes at random intervals based on live events. The thing is, the web UI will be running something in the region of 2,000 instances, so do I have 2,000 requests per second coming from the UI or do I have 2,000 long-running requests that take up to 30 seconds?
Help and advice would be much appreciated, especially if you have worked with AJAX requests under similar volumes.
One common solution for such cases is to use static json files. Server-side scripts update them when the data is changed and they are served by fast and light webserver (like nginx). Since files are static and small - webserver will do that right in cache, in very fast manner.
Consider a better architecture. Implementing this kind of messaging system is trivial to do right in something like nodeJS. Message dispatch will be instantaneous, and you won't need to poll for your data on either side.
You don't need to rewrite your whole system: The data producer could simply POST the updates to the nodeJS server instead of writing them to a file, and as a bonus, you don't even need to waste time on disk IO.
If you started without knowing any nodeJS, you could still be done in a couple hours, because you can just hack up the chat example.
I can't comment yet, but I would agree with geocar. Running live or almost live web services with just polling will be solution stuck between a rock and a hard place.
You could also look into web sockets to allow push as this sounds a better solution for this than just updating every second to 30 seconds.
Good luck!

Reverse AJAX? Can data changes be 'PUSHED' to script?

I have noticed that some of my ajax-heavy sites (ones I visit, not ones I have built), have certain auto-refresh features. For example, in GMail, if I get a new message, I see the new message without a page reload. It's the same with the Facebook browser-based IM client. From what I can tell, there aren't any java applets handling the server-browser binding, so I'm left to assume it's being done by AJAX and perhaps some element I'm unaware of. So by my best guess, it's done in one of two ways:
The javascript does a steady "ping" to a server-side script, checking for any updates that might be available (which would explain why some of these pages bring any other heavy-duty pages to a crawl). or
The javascript sits idly by and a server-side script actually "Pushes" any updates to the browser. But I'm not sure if this is possible. I'd imagine there is some kind of AJAX function that still pings, but all it simply asks "any updates?" and the server-script has a simple boolean that says "nope" or "I'm glad you asked." But if this is the case, any data changes would need to call the script directly so that it has the data changes ready and makes the change to that boolean function.
So is that possible/feasible/how it works? I imagine something like:
Someone sends an email/IM/DB update to the server, the server calls the script using the script's URL plus some relevant GET variable, the script notes the change and updates the "updates available" variable, the AJAX gets the response that there are in fact updates, the AJAX runs its normal "update page" functions, which executes the normal update scripts and outputs them to the browser.
I ask because it seems really inefficient that the js is just doing a constant check which requires a) the server to do work every 1.5 seconds, and b) my browser to do work every 1.5 seconds just so that on my end I can say "Oh boy, I got an IM! just like a real IM client!"
Read about Comet
I've actually been working on a small .NET Web App that uses the Ajax with long polling technique described.
Depending on what technology you're using, you could use thread signaling mechanisms to hold your request until an update is retrieved.
With ASP.NET I'm running my server on a single machine, so I store a reference to my Producer object (which contains a thread that processes the data). To initiate the data pull, my service's Subscribe method is called, which creates a Consumer object that's registered with the Producer. If the Consumer is long polling mode, it has a AutoResetEvent which is signaled whenever it receives new data, and whenever the web client makes a request for data, the Consumer first waits on the reset event, and then returns it.
But you're mentioning something about PHP - as far as I know persistence is maintained through serialization, not actually keeping the object in memory, so I don't know how you could reference a Producer object using $_CACHE[] or $_SESSION[]. When I developed in PHP I never really knew anything about multithreading so I didn't play around with it, but I guess you can look into that.
Using infinite loops is going to consume a lot of your processing power - I would exhaust all other options first.

Is there an alternative of ajax that does not require polling without server side modifications?

I'm trying to create a small and basic "ajax" based multiplayer game. Coordinates of objects are being given by a PHP "handler". This handler.php file is being polled every 200MS, by using ajax.
Since there is no need to poll when nothing happens, I wonder, is there something that could do the same thing without frequent polling? Eg. Comet, though I heard that you need to configure server side applications for Comet. It's a shared webserver, so I can't do that.
Maybe prevent the handler.php file from even returning a response if nothing has to be changed at the client, is that possible? Then again you'd still have the client uselessly asking for a response even though something hasn't changed yet. Basically, it should only use bandwidth and sever resources if something needs to be told to the client, eg. the change of an object's coordinates.
Comet is generally used for this kind of thing, and it can be a fragile setup as it's not a particularly common technology so it can be easy not to "get it right." That said, there are more resources available now than when I last tried it ~2 years ago.
I don't think you can do what you're thinking and have handler.php simply not return anything and stop execution: The web server will keep the connection open and prevent any further polling until handler.php does something (terminates or provides output). When it does, you're still handling a response.
You can try a long polling technique, where your AJAX allows a very large timeout (e.g. 30 seconds), and handler.php spins without responding until it has something to report, then returns. (You'll want to make sure the spinning is not resource-intensive). If handler.php "expires" and nothing happens, have it exit and let AJAX poll again. Since it only happens every 30 seconds, it will be a huge improvement over ~5 times a second. That would keep your polling to a minimum.
But that's the sort of thing Comet is designed for.
As Ajax only offers you a client server request model (normally termed pull, rather than push), the only way to get data from the server is via requests. However a common technique to get around this is for the server to only respond when it has new data. So the client makes a request, the server hangs on to that request until something happens and then replies. This gets around the need for frequent polling even when the data hasn't changed as you only need the client send a new request after it gets a response.
Since you are using PHP, one simple method might be to have the PHP code call the sleep command for 200ms at a time between checks for data changes and then return the data to the client when it does change.
EDIT: I would also recommend having a timeout on the request. So if nothing happens for say 2 seconds, a "no change" message is sent back. That way the client knows the server is still alive and processing its request.
Since this is tagged “html5”: HTML5 has <eventsource> and WebSocket, but the implementation side is still in the future tense in practice.
Opera implemented an old version of <eventsource> called <event-source>.
Here's a solution - use a SaaS comet provider, such as WebSync On-Demand. No server resources to worry about, shared hosting or not, since it's all offloaded, and you can push out the information as needed.
Since it's SaaS, it'll work with any server language. For PHP, there's already a publisher written and ready to go.
The server must take part in this. Check with the hosting provider what modules are available. Or try to convince them to support Comet.
Maybe you should consider a small Virtual Private Server (VPS) for this.
One thing to add on the long polling suggestions: If you're on a shared server, this solution will have limited scalability, as each active long poll will keep a connection (and a server-side process to service that connection) active. Your provider most likely has limits (either policy-defined or de facto) on the number of connections you can have open at a time, so you'll hit a wall if you have more sessions/windows than that playing concurrently.

Resources