I've been trying to build a search module for an application, using ElasticSearch. Below is the Index Structure I've constructed from sample code I read from other StackOverflow posts.
{
"megacorp4":{
"settings":{
"analysis":{
"analyzer":{
"my_analyzer":{
"type":"custom",
"tokenizer":"my_ngram_tokenizer",
"filter":[
"my_ngram_filter"
]
}
},
"filter":{
"my_ngram_filter":{
"type":"edgeNGram",
"min_gram":3,
"max_gram":15
}
},
"tokenizer":{
"my_ngram_tokenizer":{
"type":"edgeNGram",
"min_gram":3,
"max_gram":15
}
}
},
"mappings":{
"employee":{
"properties":{
"about":{
"type":"string",
"analyzer":"my_analyzer"
},
"age":{
"type":"long"
},
"first_name":{
"type":"string"
},
"interests":{
"type":"string",
"analyzer":"my_analyzer"
},
"last_name":{
"type":"string"
}
}
}
}
}
}
}
Below are the records I inserted to test the search functionality
[
{
"first_name":"John",
"last_name":"Smith",
"age":25,
"about":"I love to go rock climbing",
"interests":[
"sports",
"music"
]
},
{
"first_name":"Douglas",
"last_name":"Fir",
"age":35,
"about":"I like to build album climb cabinets",
"interests":[
"forestry",
"music"
]
},
{
"first_name":"Jane",
"last_name":"Smith",
"age":32,
"about":"I like to collect rock albums",
"interests":[
"music"
]
}
]
I ran a search on the 'about' column, both using API (through POSTMAN) and in the Python client as follows :
API Query:
localhost:9200/megacorp4/_search?q=climb
Python Query :
from elasticsearch import Elasticsearch
from pprint import pprint
es = Elasticsearch()
res = es.search(index="megacorp4", body={"query": {"match": {'about':"climb"}}})
pprint(res)
I'm able to obtain only exact match, and I don't get the result with 'climbing' in the output. However when I replace 'climb' with 'climb*' in the query, I get 2 records with 'climb' and 'climbing'. I don't want to use '*' wildcard approach.
I've also tried using 'english', 'standard' & 'ngram' inbuilt analyzers, but nothing seemed to work.
In need of help to implement Search a key as Partial words in Full Text.
Thanks in advance.
Use this mapping instead:
DELETE test
PUT /test
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"my_ngram_filter"
]
}
},
"filter": {
"my_ngram_filter": {
"type": "edgeNGram",
"min_gram": 3,
"max_gram": 15
}
}
}
},
"mappings": {
"employee": {
"properties": {
"about": {
"type": "string",
"analyzer": "my_analyzer"
},
"age": {
"type": "long"
},
"first_name": {
"type": "string"
},
"interests": {
"type": "string",
"analyzer": "my_analyzer"
},
"last_name": {
"type": "string"
}
}
}
}
}
POST /test/employee/_bulk
{"index":{}}
{"first_name":"John","last_name":"Smith","age":25,"about":"I love to go rock climbing","interests":["sports","music"]}
{"index":{}}
{"first_name":"Douglas","last_name":"Fir","age":35,"about":"I like to build album climb cabinets","interests":["forestry","music"]}
{"index":{}}
{"first_name":"Jane","last_name":"Smith","age":32,"about":"I like to collect rock albums","interests":["music"]}
GET /test/_search?q=about:climb
GET /test/_search
{
"query": {
"query_string": {
"query": "about:climb"
}
}
}
GET /test/_search
{
"query": {
"match": {
"about": "climb"
}
}
}
Two changes:
you need another closing curly bracket for the settings part
replace your custom tokenizer (which will not help you since you already have the edgeNGram filter) with another one, my suggestion is standard tokenizer
And for the ?q=climb part, by default this searches the _all field which is analyzed with standard analyzer and not with your custom one.
So, the correct query is localhost:9200/megacorp4/_search?q=about:climb.
Related
Main question
The user is looking for a name and enters the part of the it, let's say au, and the document with the text paul is found.
I would like to have the doc highlighted like p<em>au</em>l.
How can I achieve it if I have a complex search query (combination of match, prefix, wildcard to rule relevance)?
Sub question
When do highlight settings from documentation for type, boundary_scanner and boundary_chars come into play? As per my tests described below, these settings don't change highlighted part.
Try 1: Wildcard query with default analyzer
PUT myindex
{
"mappings": {
"properties": {
"name": {
"type": "text",
"term_vector": "with_positions_offsets"
}
}
}
}
POST myindex/_doc/1
{
"name": "paul"
}
GET myindex/_search
{
"query": {
"wildcard": {"name": "*au*"}
},
"highlight": {
"fields": {
"name": {}
},
"type": "fvh",
"boundary_scanner": "chars",
"boundary_chars": "abcdefghijklmnopqrstuvwxyz.,!? \t\n"
}
}
This kind of search returns highlight <em>paul</em> but I need to get p<em>au</em>l.
Try 2: Match query with NGRAM analyzer
This one works as described in SO question: Highlighting part of word in elasticsearch
PUT myindexngram
{
"settings": {
"analysis": {
"tokenizer": {
"ngram_tokenizer": {
"type": "nGram",
"min_gram": "2",
"max_gram": "3",
"token_chars": [
"letter",
"digit"
]
}
},
"analyzer": {
"index_ngram_analyzer": {
"type": "custom",
"tokenizer": "ngram_tokenizer",
"filter": [
"lowercase"
]
},
"search_term_analyzer": {
"type": "custom",
"tokenizer": "keyword",
"filter": "lowercase"
}
}
}
},
"mappings": {
"properties": {
"name": {
"type": "text",
"analyzer": "index_ngram_analyzer",
"term_vector": "with_positions_offsets"
}
}
}
}
POST myindexngram/_doc/1
{
"name": "paul"
}
GET myindexngram/_search
{
"query": {
"match": {"name": "au"}
},
"highlight": {
"fields": {
"name": {}
}
}
}
This highlights p<em>au</em>l as desired but:
Highlighting depends on the query type, so combining match and wildcard will again result in <em>paul</em>.
Highlighting is not affected at all on type, boundary_scanner and boundary_chars settings.
Elastic version 7.13.4
Response from Elasticsearch team:
A highlighter works on terms, so only full terms can be highlighted - whatever are the terms in your index. In your second example, au could be highlighted, because it it a term in the index, which is not the case for your first example.
There is also an option to define your own highlight_query that could be different from the main query, but this could lead to unpredictable highlights.
https://discuss.elastic.co/t/configure-highlighted-part/295164
I have the following string "Word1 Word2 StopWord1 StopWord2 Word3 Word4".
When I query for this string using ["bool"]["must"]["match"], I would like to return all text that matches "Word1Word2" and/or "Word3Word4".
I have created an analyzer that I would like to use for indexing and searching.
Using analyze API, I have confirmed that indexing is being done correctly. The shingles returned are "Word1Word2" and "Word3Word4"
I want to query so that text matching "Word1Word2" and/or "Word3Word4" are returned. How can I do this dynamically - meaning, I don't know up front how many shingles will be generated, so I don't know how many match_phrase to code up in a query.
"should":[
{ "match_phrase" : {"content": phrases[0]}},
{ "match_phrase" : {"content": phrases[1]}}
]
To query for shingles(and unigrams), you could set up your mappings to handle them cleanly in separate fields. In the example below, the field "shingles" will be used to analyze and retrieve shingles, while the implicit field will be used to handle unigrams.
PUT /my_index
{
"settings": {
"number_of_shards": 1,
"analysis": {
"filter": {
"my_shingle_filter": {
"type": "shingle",
"min_shingle_size": 2,
"max_shingle_size": 2,
"output_unigrams": false
}
},
"analyzer": {
"my_shingle_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"my_shingle_filter"
]
}
}
}
}
}
PUT /my_index/_mapping/my_type
{
"my_type": {
"properties": {
"title": {
"type": "string",
"fields": {
"shingles": {
"type": "string",
"analyzer": "my_shingle_analyzer"
}
}
}
}
}
}
GET /my_index/my_type/_search
{
"query": {
"bool": {
"must": {
"match": {
"title": "<your query string>"
}
},
"should": {
"match": {
"title.shingles": "<your query string"
}
}
}
}
}
Ref. Elasticsearch: The Definitive Guide....
Suppose there is the following mapping with Edge NGram Tokenizer:
{
"settings": {
"analysis": {
"analyzer": {
"autocomplete_analyzer": {
"tokenizer": "autocomplete_tokenizer",
"filter": [
"standard"
]
},
"autocomplete_search": {
"tokenizer": "whitespace"
}
},
"tokenizer": {
"autocomplete_tokenizer": {
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 10,
"token_chars": [
"letter",
"symbol"
]
}
}
}
},
"mappings": {
"tag": {
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"analyzer": "autocomplete_analyzer",
"search_analyzer": "autocomplete_search"
}
}
}
}
}
And the following documents are indexed:
POST /tag/tag/_bulk
{"index":{}}
{"name" : "HITS FIND SOME"}
{"index":{}}
{"name" : "TRENDING HI"}
{"index":{}}
{"name" : "HITS OTHER"}
Then searching
{
"query": {
"match": {
"name": {
"query": "HI"
}
}
}
}
yields all with the same score, or TRENDING - HI with a score higher than one of the others.
How can it be configured, to show with a higher score the entries that actually start with the searcher n-gram? In this case, HITS FIND SOME and HITS OTHER to have a higher score than TRENDING HI; at the same time TRENDING HI should be in the results.
Highlighter is also used, so the given solution shouldn't mess it up.
The highlighter used in query is:
"highlight": {
"pre_tags": [
"<"
],
"post_tags": [
">"
],
"fields": {
"name": {}
}
}
Using this with match_phrase_prefix messes up the highlighting, yielding <H><I><T><S> FIND SOME when searching only for H.
You must understand how elasticsearch/lucene analyzes your data and calculate the search score.
1. Analyze API
https://www.elastic.co/guide/en/elasticsearch/reference/current/_testing_analyzers.html this will show you what elasticsearch will store, in your case:
T / TR / TRE /.... TRENDING / / H / HI
2. Score
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html
The bool query is often used to build complex query where you need a particular use case. Use must to filter document, then should to score. A common use case is to use different analyzers on a same field (by using the keyword fields in the mapping, you can analyze a same field differently).
3. dont mess highlight
According the doc: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-highlighting.html#specify-highlight-query
You can add an extra query:
{
"query": {
"bool": {
"must" : [
{
"match": {
"name": "HI"
}
}
],
"should": [
{
"prefix": {
"name": "HI"
}
}
]
}
},
"highlight": {
"pre_tags": [
"<"
],
"post_tags": [
">"
],
"fields": {
"name": {
"highlight_query": {
"match": {
"name": "HI"
}
}
}
}
}
}
In this particular case you could add a match_phrase_prefix term to your query, which does prefix match on the last term in the text:
{
"query": {
"bool": {
"should": [
{
"match": {
"name": "HI"
}
},
{
"match_phrase_prefix": {
"name": "HI"
}
}
]
}
}
}
The match term will match on all three results, but the match_phrase_prefix won't match on TRENDING HI. As a result, you'll get all three items in the results, but TRENDING HI will appear with a lower score.
Quoting the docs:
The match_phrase_prefix query is a poor-man’s autocomplete[...] For better solutions for search-as-you-type see the completion suggester and Index-Time Search-as-You-Type.
On a side note, if you're introducing that bool query, you'll probably want to look at the minimum_should_match option, depending on the results you want.
A possible solution for this problem is to use multifields. They allow for indexing of the same data from your source document in different ways. In your case you could index the name field as default text, then as ngrams and also as edgengrams. Then the query would have to be a bool query comparing with all those different fields.
The final score of documents is composed of the match value for each one. Those matches are also called signals, signalling that there is a match between the query and the document. The document with most signals matching gets the highest score.
In your case all documents would match the ngram HI. But only the HITS FIND SOME and the HITS OTHER document would get the edgengram additional score. This would give those two documents a boost and put them on top. The complication with this is that you have to make sure that the edgengram doesn't split on whitespaces, because then the HI at the end would get the same score as in the beginning of the document.
Here is an example mapping and query for your case:
PUT /tag/
{
"settings": {
"analysis": {
"analyzer": {
"edge_analyzer": {
"tokenizer": "edge_tokenizer"
},
"kw_analyzer": {
"tokenizer": "kw_tokenizer"
},
"ngram_analyzer": {
"tokenizer": "ngram_tokenizer"
},
"autocomplete_analyzer": {
"tokenizer": "autocomplete_tokenizer",
"filter": [
"standard"
]
},
"autocomplete_search": {
"tokenizer": "whitespace"
}
},
"tokenizer": {
"kw_tokenizer": {
"type": "keyword"
},
"edge_tokenizer": {
"type": "edge_ngram",
"min_gram": 2,
"max_gram": 10
},
"ngram_tokenizer": {
"type": "ngram",
"min_gram": 2,
"max_gram": 10,
"token_chars": [
"letter",
"digit"
]
},
"autocomplete_tokenizer": {
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 10,
"token_chars": [
"letter",
"symbol"
]
}
}
}
},
"mappings": {
"tag": {
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"fields": {
"edge": {
"type": "text",
"analyzer": "edge_analyzer"
},
"ngram": {
"type": "text",
"analyzer": "ngram_analyzer"
}
}
}
}
}
}
}
And a query:
POST /tag/_search
{
"query": {
"bool": {
"should": [
{
"function_score": {
"query": {
"match": {
"name.edge": {
"query": "HI"
}
}
},
"boost": "5",
"boost_mode": "multiply"
}
},
{
"match": {
"name.ngram": {
"query": "HI"
}
}
},
{
"match": {
"name": {
"query": "HI"
}
}
}
]
}
}
}
Let be a set index/type named customers/customer.
Each document of this set has a zip-code as property.
Basically, a zip-code can be like:
String-String (ex : 8907-1009)
String String (ex : 211-20)
String (ex : 30200)
I'd like to set my index analyzer to get as many documents as possible that could match. Currently, I work like that :
PUT /customers/
{
"mappings":{
"customer":{
"properties":{
"zip-code": {
"type":"string"
"index":"not_analyzed"
}
some string properties ...
}
}
}
When I search a document I'm using that request :
GET /customers/customer/_search
{
"query":{
"prefix":{
"zip-code":"211-20"
}
}
}
That works if you want to search rigourously. But for instance if the zip-code is "200 30", then searching with "200-30" will not give any results.
I'd like to give orders to my index analyser in order to don't have this problem.
Can someone help me ?
Thanks.
P.S. If you want more information, please let me know ;)
As soon as you want to find variations you don't want to use not_analyzed.
Let's try this with a different mapping:
PUT zip
{
"settings": {
"number_of_shards": 1,
"analysis": {
"analyzer": {
"zip_code": {
"tokenizer": "standard",
"filter": [ ]
}
}
}
},
"mappings": {
"_doc": {
"properties": {
"zip": {
"type": "text",
"analyzer": "zip_code"
}
}
}
}
}
We're using the standard tokenizer; strings will be broken up at whitespaces and punctuation marks (including dashes) into tokens. You can see the actual tokens if you run the following query:
POST zip/_analyze
{
"analyzer": "zip_code",
"text": ["8907-1009", "211-20", "30200"]
}
Add your examples:
POST zip/_doc
{
"zip": "8907-1009"
}
POST zip/_doc
{
"zip": "211-20"
}
POST zip/_doc
{
"zip": "30200"
}
Now the query seems to work fine:
GET zip/_search
{
"query": {
"match": {
"zip": "211-20"
}
}
}
This will also work if you just search for "211". However, this might be too lenient, since it will also find "20", "20-211", "211-10",...
What you probably want is a phrase search where all the tokens in your query need to be in the field and also in the right order:
GET zip/_search
{
"query": {
"match_phrase": {
"zip": "211"
}
}
}
Addition:
If the ZIP codes have a hierarchical meaning (if you have "211-20" you want this to be found when searching for "211", but not when searching for "20"), you can use the path_hierarchy tokenizer.
So changing the mapping to this:
PUT zip
{
"settings": {
"number_of_shards": 1,
"analysis": {
"analyzer": {
"zip_code": {
"tokenizer": "zip_tokenizer",
"filter": [ ]
}
},
"tokenizer": {
"zip_tokenizer": {
"type": "path_hierarchy",
"delimiter": "-"
}
}
}
},
"mappings": {
"_doc": {
"properties": {
"zip": {
"type": "text",
"analyzer": "zip_code"
}
}
}
}
}
Using the same 3 documents from above you can use the match query now:
GET zip/_search
{
"query": {
"match": {
"zip": "1009"
}
}
}
"1009" won't find anything, but "8907" or "8907-1009" will.
If you want to also find "1009", but with a lower score, you'll have to analyze the zip code with both variations I have shown (combine the 2 versions of the mapping):
PUT zip
{
"settings": {
"number_of_shards": 1,
"analysis": {
"analyzer": {
"zip_hierarchical": {
"tokenizer": "zip_tokenizer",
"filter": [ ]
},
"zip_standard": {
"tokenizer": "standard",
"filter": [ ]
}
},
"tokenizer": {
"zip_tokenizer": {
"type": "path_hierarchy",
"delimiter": "-"
}
}
}
},
"mappings": {
"_doc": {
"properties": {
"zip": {
"type": "text",
"analyzer": "zip_standard",
"fields": {
"hierarchical": {
"type": "text",
"analyzer": "zip_hierarchical"
}
}
}
}
}
}
}
Add a document with the inverse order to properly test it:
POST zip/_doc
{
"zip": "1009-111"
}
Then search both fields, but boost the one with the hierarchical tokenizer by 3:
GET zip/_search
{
"query": {
"multi_match" : {
"query" : "1009",
"fields" : [ "zip", "zip.hierarchical^3" ]
}
}
}
Then you can see that "1009-111" has a much higher score than "8907-1009".
I built an ElasticSearch index using a custom analyzer which uses letter tokenizer and lower_case and word_delimiter token filters. Then I tried searching for documents containing underscore-separated sub-words, e.g. abc_xyz, using only one of the sub-words, e.g. abc, but it didn't come back with any result. When I tried the full-word, i.e. abc_xyz, it did find the document.
Then I changed the document to have dash-separated sub-words instead, e.g. abc-xyz and tried to search by sub-words again and it worked.
To try to understand what is going on, I thought I would check the terms generated for my documents using _termvector service, and the result was identical for both, the underscore-separated sub-words and the dash-separated sub-words, so really I expect the result of searching to be identical in both cases.
Any idea what I could be doing wrong?
If it helps, this is the settings I used for my index:
{
"settings": {
"index": {
"analysis": {
"analyzer": {
"cmt_value_analyzer": {
"tokenizer": "letter",
"filter": [
"lowercase",
"my_filter"
],
"type": "custom"
}
},
"filter": {
"my_filter": {
"type": "word_delimiter"
}
}
}
}
},
"mappings": {
"alertmodel": {
"properties": {
"name": {
"analyzer": "cmt_value_analyzer",
"term_vector": "with_positions_offsets_payloads",
"type": "string"
},
"productId": {
"type": "double"
},
"productName": {
"analyzer": "cmt_value_analyzer",
"term_vector": "with_positions_offsets_payloads",
"type": "string"
},
"link": {
"analyzer": "cmt_value_analyzer",
"term_vector": "with_positions_offsets_payloads",
"type": "string"
},
"updatedOn": {
"type": "date"
}
}
}
}
}