Boost logging - getting unresolved symbol - boost

I am a novice to cmake and boost so this question might be missing something obvious:
I am building a project with cmake on linux (ubuntu) and I am trying to use boost logging in that project. Here is what I do to generate the Makefile:
rm CMakeCache.txt
cmake ../ -DCMAKE_EXE_LINKER_FLAGS="-lboost_log -lboost_log_setup -lpthread -std=c++11" -DCMAKE_SHARED_LINKER_FLAGS="-lboost_log_setup -lboost_log -lpthread" -DCMAKE_MODULE_LINKER_FLAGS="-lboost_log_setup -lboost_log -lpthread" -DCMAKE_CXX_FLAGS="-DBOOST_LOG_DYN_LINK -std=c++11"
Compile goes through fine. (Some of these flags may be overkill -- I should only need the CMAKE_EXE_LINKER_FLAGS).
When I run the executable, I get the following unresolved reference:
-- ImportError: /home/mranga/gr-msod-sensor/gr-msod_sensor/build/lib/libgnuradio-msod_sensor.so: undefined symbol: _ZN5boost3log11v2_mt_posix3aux25unhandled_exception_countEv
What flags am I missing? My boost library is set up and LD_LIBRARY_PATH points to the right location.
When I manually built a test program using the same linker flags, it compiles and runs fine so boost is installed correctly. I hope I have not missed the obvious.
(Moved question from the GNU Radio mailing list -- sorry if you are reading this post for a second time).

I believe the order of libraries in the linker command line in -DCMAKE_EXE_LINKER_FLAGS is incorrect. boost_log_setup depends on boost_log, so boost_log_setup should go first.

You seem to be linking against the non-multithreaded version:
-lboost_log
but the run-time linker seems to explicitely look for the multithreaded variant (the Boost doc site on that):
_ZN5boost3log11v2_mt_posix3aux25unhandled_exception_countEv
^^
My guess hence is that you should try linking with
-lboost_log_mt
but the question whether that is right or not depends too much on your individual project to make it possible for me to clearly answer this.

Related

GCC built from source in different location is incorrectly using same shared libs as native GCC

I'm a student doing research involving extending the TM capabilities of gcc. My goal is to make changes to gcc source, build gcc from the modified source, and, use the new executable the same way I'd use my distro's vanilla gcc.
I built and installed gcc in a different location (not /usr/bin/gcc), specifically because the modified gcc will be unstable, and because our project goal is to compare transactional programs compiled with the two different versions.
Our changes to gcc source impact both /gcc and /libitm. This means we are making a change to libitm.so, one of the shared libraries that get built.
My expectation:
when compiling myprogram.cpp with /usr/bin/g++, the version of libitm.so that will get linked should be the one that came with my distro;
when compiling it with ~/project/install-dir/bin/g++, the version of libitm.so that will get linked should be the one that just got built when I built my modified gcc.
But in reality it seems both native gcc and mine are using the same libitm, /usr/lib/x86_64-linux-gnu/libitm.so.1.
I only have a rough grasp of gcc internals as they apply to our project, but this is my understanding:
Our changes tell one compiler pass to conditionally insert our own "function builtin" instead of one it would normally use, and this is / becomes a "symbol" which needs to link to libitm.
When I use the new gcc to compile my program, that pass detects those conditions and successfully inserts the symbol, but then at runtime my program gives a "relocation error" indicating the symbol is not defined in the file it is searching in: ./test: relocation error: ./test: symbol _ITM_S1RU4, version LIBITM_1.0 not defined in file libitm.so.1 with link time reference
readelf shows me that /usr/lib/x86_64-linux-gnu/libitm.so.1 does not contain our new symbols while ~/project/install-dir/lib64/libitm.so.1 does; if I re-run my program after simply copying the latter libitm over the former (backing it up first, of course), it does not produce the relocation error anymore. But naturally this is not a permanent solution.
So I want the gcc I built to use the shared libs that were built along with it when linking. And I don't want to have to tell it where they are every time - my feeling is that it should know where to look for them since I deliberately built it somewhere else to behave differently.
This sounds like the kind of problem any amateur gcc developer would have when trying to make a dev environment and still be able to use both versions of gcc, but I had difficulty finding similar questions. I am thinking this is a matter of lacking certain config options when I configure gcc before building it. What is the right configuration to do this?
My small understanding of the instructions for building and installing gcc led me to do the following:
cd ~/project/
mkdir objdir
cd objdir
../source-dir/configure --enable-languages=c,c++ --prefix=/home/myusername/project/install-dir
make -j2
make install
I only have those config options because they seemed like the ones closest related to "only building the parts I need" and "not overwriting native gcc", but I could be wrong. After the initial config step I just re-run make -j2 and make install every time I change the code. All these steps do complete without errors, and they produce the ~/project/install-dir/bin/ folder, containing the gcc and g++ which behave as described.
I use ~/project/install-dir/bin/g++ -fgnu-tm -o myprogram myprogram.cpp to compile a transactional program, possibly with other options for programs with threads.
(I am using Xubuntu 16.04.3 (64 bit), within VirtualBox on Windows. The installed /usr/bin/gcc is version 5.4.0. Our source at ~/project/source-dir/ is a modified version of 5.3.0.)
You’re running into build- versus run-time linking differences. When you build with -fgnu-tm, the compiler knows where the library it needs is found, and it tells the linker where to find it; you can see this by adding -v to your g++ command. However when you run the resulting program, the dynamic linker doesn’t know it should look somewhere special for the ITM library, so it uses the default library in /usr/lib/x86_64-linux-gnu.
Things get even more confusing with ITM on Ubuntu because the library is installed system-wide, but the link script is installed in a GCC-private directory. This doesn’t happen with the default GCC build, so your own GCC build doesn’t do this, and you’ll see libitm.so in ~/project/install-dir/lib64.
To fix this at run-time, you need to tell the dynamic linker where to find the right library. You can do this either by setting LD_LIBRARY_PATH (to /home/.../project/install-dir/lib64), or by storing the path in the binary using -Wl,-rpath=/home/.../project/install-dir/lib64 when you build it.

Building cmake with non-default GCC uses system libstdc++

I'm trying to compile CMake using a non-default GCC installed in /usr/local/gcc530, on Solaris 2.11.
I have LD_LIBRARY_PATH=/usr/local/gcc530/lib/sparcv9
Bootstrap proceeds fine, bootstrapped cmake successfully compiles various object files, but when it tries to link the real cmake (and other executables), I get pages of "undefined reference" errors to various standard library functions, because, as running the link command manually with -Wl,-verbose shows, the linker links with /usr/lib/64/libstdc++.so of the system default, much older GCC.
This is because apparently CMake tries to find curses/ncurses libraries (even if I tell it BUILD_CursesDialog:BOOL=OFF), finds them in /usr/lib/64, and adds -L/usr/lib/64 to build/Source/CMakeFiles/cmake.dir/link.txt, which causes the linker to use libstdc++.so from there, and not my actual GCC's own.
I found a workaround: I can get the path to proper libraries from $CC -m64 -print-file-name=libstdc++.so then put it with -L into LDFLAGS when running ./configure, and all works well then.
Is there a less hacky way? It's really weird that I can't tell GCC to prioritize its own libraries.
Also, is there some way to have CMake explain where different parts of a resulting command line came from?

Force CMake to use static libraries

[Shamelessly cross-posted from the CMake help list]
I'm trying to create binaries as statically as possible. The fortran code I've got has got X11 and quadmath as dependencies, and I've come across a number of issues (maybe each of these issues should be in a different question?):
My variables are currently
set(CMAKE_LIBRARY_PATH /usr/X11/lib /usr/X11/include/X11 ${CMAKE_LIBRARY_PATH})
find_package(X11 REQUIRED)
find_library(X11 NAMES X11.a PATHS /usr/X11/include/X11/ /usr/X11/lib)
find_library(X11_Xaw_LIB NAMES Xaw Xaw /usr/X11/include/X11/ /usr/X11/lib ${X11_LIB_SEARCH_PATH})
find_library(Xaw Xaw7 PATHS ${X11_LIB_SEARCH_PATH})
set(CMAKE_LIBRARY_PATH /usr/lib/gcc/x86_64-linux-gnu/4.7 /usr/lib/gcc/x86_64-linux-gnu/4.7/x32 /usr/lib/gcc/x86_64-linux-gnu/4.7/32 ${CMAKE_LIBRARY_PATH})
find_library(quadmath NAMES quadmath.a)
set(BUILD_SHARED_LIBS ON)
set(CMAKE_FIND_LIBRARY_SUFFIXES .a ${CMAKE_FIND_LIBRARY_SUFFIXES})
set(LINK_SEARCH_START_STATIC TRUE)
set(LINK_SEARCH_END_STATIC TRUE)
set(SHARED_LIBS OFF)
set(STATIC_LIBS ON)
set(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static")
Using these, CMake attempts to build every program statically (as expected) - however, it fails because I don't have Xaw.a - I can't find out whether this actually should exist. I have installed the latest libxaw7-dev which I was expecting to fix it. One option would be to compile the X11 libraries myself, but I don't really want to do that...
if I comment out only set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static"), then CMake compiles everything, but uses shared libraries for every program, even though I specify the location of .a X11 libraries in my find_library() calls. I was expecting CMake to use the .a files where it could and then only use shared libraries - is there a way to force this behaviour?
does anyone know yet of a fix for the bug described here: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=46539; whereby gfortran seemingly can't statically link libquadmath? I tried the fix using gcc but I can't get CMake to recognise the libgfortran flag:
cmake -DCMAKE_Fortran_COMPILER=gcc -DCMAKE_Fortran_FLAGS=-gfortran
results in
-- The Fortran compiler identification is unknown
-- Check for working Fortran compiler: /usr/bin/gcc
-- Check for working Fortran compiler: /usr/bin/gcc -- broken
CMake Error at /usr/share/cmake-2.8/Modules/CMakeTestFortranCompiler.cmake:54 (message):
The Fortran compiler "/usr/bin/gcc" is not able to compile a simple test program.
However, as you might have noticed, I set the location of the libquadmath.a; when I build a program which doesn't use X11 but does use quadmath when I use
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static")
then the program does compile successfully (running ldd reports 'not a dynamic executable') - does this mean that the bug has been fixed, or does it only work because I set the location in CMake?
I was having a similar problem. Turns out that cmake was implicitly linking against libgfortran and libquadmath. To fix this I put the following in my top level CMakeLists.txt:
unset(CMAKE_Fortran_IMPLICIT_LINK_LIBRARIES)
I could then explicitly link again the libraries using:
SET_TARGET_PROPERTIES(main_f PROPERTIES LINKER_LANGUAGE "C"
LINK_FLAGS
"/usr/local/Cellar/gcc/7.1.0/lib/gcc/7/libgfortran.a
/usr/local/Cellar/gcc/7.1.0/lib/gcc/7/libquadmath.a -lm -lgcc"
)
The static version of libgfortran is necessary because the shared library also depends on libquadmath. The added "-lm" and "-lgcc" bring in the system dynamic versions of these libraries. On a mac system, you would want to use the full path to your libm.a as well.
I guess your questions are not that much related, I don't know the answer for all of them.
For your static linking problems, since you're using GCC, you can pass multiple -static and -dynamic flags to it:
set(CMAKE_EXE_LINKER_FLAGS "-static ${STATIC_LIBS} -dynamic ${EVERYTHING ELSE} -static ${MORE_STATIC_LIBS}")
I don't know why Xaw.a isn't available on your system, probably because the package maintainer of your Linux distribution didn't really make them available.
Also, compiling everything static might make things not compatible between all distros out there and you cripple the ability for others to use improved, up-to-date libraries with your program, it might not be what you want.
If you intend to make a self-contained package of your program, it might be better just to include the shared libraries you used together, like Dropbox and many other proprietary applications do (Humble Bundle games are other example).

ld: After successful linking shared lib not found on execution

I am currently working on a simple data synchonizer in a mixture of Fortran and C/C++ by using OpenMPI libraries. The synchonizer compiles and links correctly, as far as I can see:
f95 -o fortran_mpi_test *.o -L/usr/lib/gcc/x86_64-redhat-linux/4.1.1/
-L/usr/lib64/openmpi/1.4-gcc/lib/ -lmpi -lmpi_cxx -lstdc++
But when I execute the resulting executable on the same machined I get an error stating that one of the shared libraries is not found. That is confirmed by ldd.
Nevertheless the missing library libmpi_cxx.so.0 is located in one of the specified folders.
Could anyone give me a hint what I could have done wrong?
Check your environment variables. If your LIBRARY_PATH, LD_LIBRARY_PATH or similar vars have gotten out of sync or set to silly values you might not be searching the same directories for static libraries as you do for dynamics.
Also check out the ld.so manpage

configure.in: AM_DISABLE_SHARED doesn't change my Makefile

I'm extremely new to using Makefiles and autoconf. I'm using the Camellia image library and trying to statically link my code against their libraries. When I run "make" on the Camellia image library, I get libCamellia.a, .so, .la, and .so.0.0.0 files inside my /usr/local/lib directory. This is the command I use to compile my code with their libraries:
gcc -L/usr/local/lib -lCamellia -o myprogram myprogram.c
This works fine, but when I try to statically link, this is what I get:
gcc -static -L/usr/local/lib -lCamellia -o myprogram myprogram.c
/tmp/cck0pw70.o: In function `main':
myprogram.c:(.text+0x23): undefined reference to `camLoadPGM'
myprogram.c:(.text+0x55): undefined reference to `camAllocateImage'
myprogram.c:(.text+0x97): undefined reference to `camZoom2x'
myprogram.c:(.text+0x104): undefined reference to `camSavePGM'
collect2: ld returned 1 exit status
I want to statically link because I'm trying to modify the Camellia source code and I want to compare my version against theirs. So after some googling, I tried adding AM_DISABLE_SHARED into the configure.in file. But after running ./configure, I still get the exact same Makefile. After I "make install", I still get the same results above.
What is an easy way to get two versions of my code, one with the original Camellia source code compiled and one with my modified version? I think static libraries should work. There is an easy way to get static libraries working or are there other simple solutions to my problem? I just don't want to re-"make" and re-"make install" everytime I want to compare my version against the original.
Did you re-run autoconf after adding AM_DISABLE_SHARED and before configure, make, make install? You also can just use configure --disable-dynamic to stop it building the shared libraries. Make sure you delete any previously installed ones - make uninstall should do that. I can't see anything else obviously wrong. Try being explicit:
gcc -static -o myprogram myprogram.c /usr/local/lib/libCamellia.a
or break it down into two steps and check the symbols in myprogram.o are what you expect with nm myprogram.o.
I am not skillful with autoconf and I don't know why your attempt to link statically fails, but if linking dynamically works I think using shared libraries would actually solve your problem a little better.
Just make two shared libraries, one with the original Camellia code and one with your modified version. Put them in two different directories, and when you run myprogram you can choose between them either by switching LD_LIBRARY_PATH (or whatever you're using to find libraries) or by keeping a symbolic link in /usr/local/lib and switching it between libraries. The advantage of this over static libraries (apart from the fact that this works) is that you can tinker with your modified code, rebuild the shared library and run without having to rebuild myprogram (as long as you don't modify the signatures).
P.S. An experiment: try removing the shared libraries from /usr/local/lib and rebuilding without the -static flag, just as if you were using the shared libraries. In theory this should cause gcc to use the static libraries instead. The results may give a clue to why the static link is failing.

Resources