Related
I have a function that returns a double. The code listing below is an example that I'm using for testing, but the real function will be pulled from an analysis of a data set.
public double f(double x)
{
return (100000 - x) / 15000;
}
It can be assumed that a higher value of x will always return a lower value, so as x approaches 0 the value returned can potentially increase, but it may always stay at 0.
Values of x will always be positive.
I'd like to be able to find the lowest value of f(x) that is >= to 7 when supplied with a given minimum and maximum value (precision only matters to 0.001). In the example above I'm using 100000 as the maximum value and 1 as the minimum.
Is this a good candidate for a binary search or is there a better alternative?
Yes and no.
If the monotonic function does not converge to a finite value - than yes, you could use binary search as follows:
i <- 1
while (f(i) > target):
i <- i*2
binary search for target in the range `[2^(i-1),2^i]` for best candidate.
Complexity of the above is O(log(i)) - where i is the index of the closest element.
Note however, that if the function converges to some constant value, all bets are off.
For example, it won't help you to find the closest value to -1 for the function f(i) = 1/i. In this case, thew algorithm will be in an infinite loop.
Generate a random number in range [x..y] where x and y are any arbitrary floating point numbers. Use function random(), which returns a random floating point number in range [0..1] from P uniformly distributed numbers (call it "density"). Uniform distribution must be preserved and P must be scaled as well.
I think, there is no easy solution for such problem. To simplify it a bit, I ask you how to generate a number in interval [-0.5 .. 0.5], then in [0 .. 2], then in [-2 .. 0], preserving uniformness and density? Thus, for [0 .. 2] it must generate a random number from P*2 uniformly distributed numbers.
The obvious simple solution random() * (x - y) + y will generate not all possible numbers because of the lower density for all abs(x-y)>1.0 cases. Many possible values will be missed. Remember, that random() returns only a number from P possible numbers. Then, if you multiply such number by Q, it will give you only one of P possible values, scaled by Q, but you have to scale density P by Q as well.
If I understand you problem well, I will provide you a solution: but I would exclude 1, from the range.
N = numbers_in_your_random // [0, 0.2, 0.4, 0.6, 0.8] will be 5
// This turns your random number generator to return integer values between [0..N[;
function randomInt()
{
return random()*N;
}
// This turns the integer random number generator to return arbitrary
// integer
function getRandomInt(maxValue)
{
if (maxValue < N)
{
return randomInt() % maxValue;
}
else
{
baseValue = randomInt();
bRate = maxValue DIV N;
bMod = maxValue % N;
if (baseValue < bMod)
{
bRate++;
}
return N*getRandomInt(bRate) + baseValue;
}
}
// This will return random number in range [lower, upper[ with the same density as random()
function extendedRandom(lower, upper)
{
diff = upper - lower;
ndiff = diff * N;
baseValue = getRandomInt(ndiff);
baseValue/=N;
return lower + baseValue;
}
If you really want to generate all possible floating point numbers in a given range with uniform numeric density, you need to take into account the floating point format. For each possible value of your binary exponent, you have a different numeric density of codes. A direct generation method will need to deal with this explicitly, and an indirect generation method will still need to take it into account. I will develop a direct method; for the sake of simplicity, the following refers exclusively to IEEE 754 single-precision (32-bit) floating point numbers.
The most difficult case is any interval that includes zero. In that case, to produce an exactly even distribution, you will need to handle every exponent down to the lowest, plus denormalized numbers. As a special case, you will need to split zero into two cases, +0 and -0.
In addition, if you are paying such close attention to the result, you will need to make sure that you are using a good pseudorandom number generator with a large enough state space that you can expect it to hit every value with near-uniform probability. This disqualifies the C/Unix rand() and possibly the*rand48() library functions; you should use something like the Mersenne Twister instead.
The key is to dissect the target interval into subintervals, each of which is covered by different combination of binary exponent and sign: within each subinterval, floating point codes are uniformly distributed.
The first step is to select the appropriate subinterval, with probability proportional to its size. If the interval contains 0, or otherwise covers a large dynamic range, this may potentially require a number of random bits up to the full range of the available exponent.
In particular, for a 32-bit IEEE-754 number, there are 256 possible exponent values. Each exponent governs a range which is half the size of the next greater exponent, except for the denormalized case, which is the same size as the smallest normal exponent region. Zero can be considered the smallest denormalized number; as mentioned above, if the target interval straddles zero, the probability of each of +0 and -0 should perhaps be cut in half, to avoid doubling its weight.
If the subinterval chosen covers the entire region governed by a particular exponent, all that is necessary is to fill the mantissa with random bits (23 bits, for 32-bit IEEE-754 floats). However, if the subinterval does not cover the entire region, you will need to generate a random mantissa that covers only that subinterval.
The simplest way to handle both the initial and secondary random steps may be to round the target interval out to include the entirety of all exponent regions partially covered, then reject and retry numbers that fall outside it. This allows the exponent to be generated with simple power-of-2 probabilities (e.g., by counting the number of leading zeroes in your random bitstream), as well as providing a simple and accurate way of generating a mantissa that covers only part of an exponent interval. (This is also a good way of handling the +/-0 special case.)
As another special case: to avoid inefficient generation for target intervals which are much smaller than the exponent regions they reside in, the "obvious simple" solution will in fact generate fairly uniform numbers for such intervals. If you want exactly uniform distributions, you can generate the sub-interval mantissa by using only enough random bits to cover that sub-interval, while still using the aforementioned rejection method to eliminate values outside the target interval.
well, [0..1] * 2 == [0..2] (still uniform)
[0..1] - 0.5 == [-0.5..0.5] etc.
I wonder where have you experienced such an interview?
Update: well, if we want to start caring about losing precision on multiplication (which is weird, because somehow you did not care about that in the original task, and pretend we care about "number of values", we can start iterating. In order to do that, we need one more function, which would return uniformly distributed random values in [0..1) — which can be done by dropping the 1.0 value would it ever appear. After that, we can slice the whole range in equal parts small enough to not care about losing precision, choose one randomly (we have enough randomness to do that), and choose a number in this bucket using [0..1) function for all parts but the last one.
Or, you can come up with a way to code enough values to care about—and just generate random bits for this code, in which case you don't really care whether it's [0..1] or just {0, 1}.
Let me rephrase your question:
Let random() be a random number generator with a discrete uniform distribution over [0,1). Let D be the number of possible values returned by random(), each of which is precisely 1/D greater than the previous. Create a random number generator rand(L, U) with a discrete uniform distribution over [L, U) such that each possible value is precisely 1/D greater than the previous.
--
A couple quick notes.
The problem in this form, and as you phrased it is unsolvable. That
is, if N = 1 there is nothing we can do.
I don't require that 0.0 be one of the possible values for random(). If it is not, then it is possible that the solution below will fail when U - L < 1 / D. I'm not particularly worried about that case.
I use all half-open ranges because it makes the analysis simpler. Using your closed ranges would be simple, but tedious.
Finally, the good stuff. The key insight here is that the density can be maintained by independently selecting the whole and fractional parts of the result.
First, note that given random() it is trivial to create randomBit(). That is,
randomBit() { return random() >= 0.5; }
Then, if we want to select one of {0, 1, 2, ..., 2^N - 1} uniformly at random, that is simple using randomBit(), just generate each of the bits. Call this random2(N).
Using random2() we can select one of {0, 1, 2, ..., N - 1}:
randomInt(N) { while ((val = random2(ceil(log2(N)))) >= N); return val; }
Now, if D is known, then the problem is trivial as we can reduce it to simply choosing one of floor((U - L) * D) values uniformly at random and we can do that with randomInt().
So, let's assume that D is not known. Now, let's first make a function to generate random values in the range [0, 2^N) with the proper density. This is simple.
rand2D(N) { return random2(N) + random(); }
rand2D() is where we require that the difference between consecutive possible values for random() be precisely 1/D. If not, the possible values here would not have uniform density.
Next, we need a function that selects a value in the range [0, V) with the proper density. This is similar to randomInt() above.
randD(V) { while ((val = rand2D(ceil(log2(V)))) >= V); return val; }
And finally...
rand(L, U) { return L + randD(U - L); }
We now may have offset the discrete positions if L / D is not an integer, but that is unimportant.
--
A last note, you may have noticed that several of these functions may never terminate. That is essentially a requirement. For example, random() may have only a single bit of randomness. If I then ask you to select from one of three values, you cannot do so uniformly at random with a function that is guaranteed to terminate.
Consider this approach:
I'm assuming the base random number generator in the range [0..1]
generates among the numbers
0, 1/(p-1), 2/(p-1), ..., (p-2)/(p-1), (p-1)/(p-1)
If the target interval length is less than or equal to 1,
return random()*(y-x) + x.
Else, map each number r from the base RNG to an interval in the
target range:
[r*(p-1)*(y-x)/p, (r+1/(p-1))*(p-1)*(y-x)/p]
(i.e. for each of the P numbers assign one of P intervals with length (y-x)/p)
Then recursively generate another random number in that interval and
add it to the interval begin.
Pseudocode:
const p;
function rand(x, y)
r = random()
if y-x <= 1
return x + r*(y-x)
else
low = r*(p-1)*(y-x)/p
high = low + (y-x)/p
return x + low + rand(low, high)
In real math: the solution is just the provided:
return random() * (upper - lower) + lower
The problem is that, even when you have floating point numbers, only have a certain resolution. So what you can do is apply above function and add another random() value scaled to the missing part.
If I make a practical example it becomes clear what I mean:
E.g. take random() return value from 0..1 with 2 digits accuracy, ie 0.XY, and lower with 100 and upper with 1100.
So with above algorithm you get as result 0.XY * (1100-100) + 100 = XY0.0 + 100.
You will never see 201 as result, as the final digit has to be 0.
Solution here would be to generate again a random value and add it *10, so you have accuracy of one digit (here you have to take care that you dont exceed your given range, which can happen, in this case you have to discard the result and generate a new number).
Maybe you have to repeat it, how often depends on how many places the random() function delivers and how much you expect in your final result.
In a standard IEEE format has a limited precision (i.e. double 53 bits). So when you generate a number this way, you never need to generate more than one additional number.
But you have to be careful that when you add the new number, you dont exceed your given upper limit. There are multiple solutions to it: First if you exceed your limit, you start from new, generating a new number (dont cut off or similar, as this changes the distribution).
Second possibility is to check the the intervall size of the missing lower bit range, and
find the middle value, and generate an appropiate value, that guarantees that the result will fit.
You have to consider the amount of entropy that comes from each call to your RNG. Here is some C# code I just wrote that demonstrates how you can accumulate entropy from low-entropy source(s) and end up with a high-entropy random value.
using System;
using System.Collections.Generic;
using System.Security.Cryptography;
namespace SO_8019589
{
class LowEntropyRandom
{
public readonly double EffectiveEntropyBits;
public readonly int PossibleOutcomeCount;
private readonly double interval;
private readonly Random random = new Random();
public LowEntropyRandom(int possibleOutcomeCount)
{
PossibleOutcomeCount = possibleOutcomeCount;
EffectiveEntropyBits = Math.Log(PossibleOutcomeCount, 2);
interval = 1.0 / PossibleOutcomeCount;
}
public LowEntropyRandom(int possibleOutcomeCount, int seed)
: this(possibleOutcomeCount)
{
random = new Random(seed);
}
public int Next()
{
return random.Next(PossibleOutcomeCount);
}
public double NextDouble()
{
return interval * Next();
}
}
class EntropyAccumulator
{
private List<byte> currentEntropy = new List<byte>();
public double CurrentEntropyBits { get; private set; }
public void Clear()
{
currentEntropy.Clear();
CurrentEntropyBits = 0;
}
public void Add(byte[] entropy, double effectiveBits)
{
currentEntropy.AddRange(entropy);
CurrentEntropyBits += effectiveBits;
}
public byte[] GetBytes(int count)
{
using (var hasher = new SHA512Managed())
{
count = Math.Min(count, hasher.HashSize / 8);
var bytes = new byte[count];
var hash = hasher.ComputeHash(currentEntropy.ToArray());
Array.Copy(hash, bytes, count);
return bytes;
}
}
public byte[] GetPackagedEntropy()
{
// Returns a compact byte array that represents almost all of the entropy.
return GetBytes((int)(CurrentEntropyBits / 8));
}
public double GetDouble()
{
// returns a uniformly distributed number on [0-1)
return (double)BitConverter.ToUInt64(GetBytes(8), 0) / ((double)UInt64.MaxValue + 1);
}
public double GetInt(int maxValue)
{
// returns a uniformly distributed integer on [0-maxValue)
return (int)(maxValue * GetDouble());
}
}
class Program
{
static void Main(string[] args)
{
var random = new LowEntropyRandom(2); // this only provides 1 bit of entropy per call
var desiredEntropyBits = 64; // enough for a double
while (true)
{
var adder = new EntropyAccumulator();
while (adder.CurrentEntropyBits < desiredEntropyBits)
{
adder.Add(BitConverter.GetBytes(random.Next()), random.EffectiveEntropyBits);
}
Console.WriteLine(adder.GetDouble());
Console.ReadLine();
}
}
}
}
Since I'm using a 512-bit hash function, that is the max amount of entropy that you can get out of the EntropyAccumulator. This could be fixed, if necessarily.
If I understand your problem correctly, it's that rand() generates finely spaced but ultimately discrete random numbers. And if we multiply it by (y-x) which is large, this spreads these finely spaced floating point values out in a way that is missing many of the floating point values in the range [x,y]. Is that all right?
If so, I think we have a solution already given by Dialecticus. Let me explain why he is right.
First, we know how to generate a random float and then add another floating point value to it. This may produce a round off error due to addition, but it will be in the last decimal place only. Use doubles or something with finer numerical resolution if you want better precision. So, with that caveat, the problem is no harder than finding a random float in the range [0,y-x] with uniform density. Let's say y-x = z. Obviously, since z is a floating point it may not be an integer. We handle the problem in two steps: first we generate the random digits to the left of the decimal point and then generate the random digits to the right of it. Doing both uniformly means their sum is uniformly distributed across the range [0,z] too. Let w be the largest integer <= z. To answer our simplified problem, we can first pick a random integer from the range {0,1,...,w}. Then, step #2 is to add a random float from the unit interval to this random number. This isn't multiplied by any possibly large values, so it has as fine a resolution as the numerical type can have. (Assuming you're using an ideal random floating point number generator.)
So what about the corner case where the random integer was the largest one (i.e. w) and the random float we added to it was larger than z - w so that the random number exceeds the allowed maximum? The answer is simple: do all of it again and check the new result. Repeat until you get a digit in the allowed range. It's an easy proof that a uniformly generated random number which is tossed out and generated again if it's outside an allowed range results in a uniformly generated random in the allowed range. Once you make this key observation, you see that Dialecticus met all your criteria.
When you generate a random number with random(), you get a floating point number between 0 and 1 having an unknown precision (or density, you name it).
And when you multiply it with a number (NUM), you lose this precision, by lg(NUM) (10-based logarithm). So if you multiply by 1000 (NUM=1000), you lose the last 3 digits (lg(1000) = 3).
You may correct this by adding a smaller random number to the original, which has this missing 3 digits. But you don't know the precision, so you can't determine where are they exactly.
I can imagine two scenarios:
(X = range start, Y = range end)
1: you define the precision (PREC, eg. 20 digits, so PREC=20), and consider it enough to generate a random number, so the expression will be:
( random() * (Y-X) + X ) + ( random() / 10 ^ (PREC-trunc(lg(Y-X))) )
with numbers: (X = 500, Y = 1500, PREC = 20)
( random() * (1500-500) + 500 ) + ( random() / 10 ^ (20-trunc(lg(1000))) )
( random() * 1000 + 500 ) + ( random() / 10 ^ (17) )
There are some problems with this:
2 phase random generation (how much will it be random?)
the first random returns 1 -> result can be out of range
2: guess the precision by random numbers
you define some tries (eg. 4) to calculate the precision by generating random numbers and count the precision every time:
- 0.4663164 -> PREC=7
- 0.2581916 -> PREC=7
- 0.9147385 -> PREC=7
- 0.129141 -> PREC=6 -> 7, correcting by the average of the other tries
That's my idea.
In my app I need to run a 5 digits number through an algorithm and return a number between the given interval, ie:
The function encode, gets 3 parameters, 5 digits initial number, interval lower limit and interval superior limit, for example:
int res=encode(12879,10,100) returns 83.
The function starts from 12879 and does something with the numbers and returns a number between 10 and 100. This mustn't be random, every time I pass the number 12879 to the encode function must always return the same number.
Any ideas?
Thanks,
Direz
One possible approach:
compute the range of your interval R = (100 - 10) + 1
compute a hash modulo R of the input H = hash(12879) % R
add the lower bound to the modular hash V = 10 + H
Here the thing though - you haven't defined any constraints or requirements on the "algorithm" that produces the result. If all you want is to map a value into a given range (without any knowledge of the distribution of the input, or how input values may cluster, etc), you could just as easily just take the range modulo of the input without hashing (as Foo Bah demonstrates).
If there are certain constraints, requirements, or distributions of the input or output of your encode method, then the approach may need to be quite different. However, you are the only one who knows what additional requirements you have.
You can do something simple like
encode(x,y,z) --> y + (x mod (z-y))
You don't have an upper limit for this function?
Assume it is 99999 because it is 5 digits. For your case, the simplest way is:
int encode (double N,double H,double L)
{
return (int)(((H - L) / (99999 - 10000)) * (N - 10000) + 10);
}
I'm looking for a decent, elegant method of calculating this simple logic.
Right now I can't think of one, it's spinning my head.
I am required to do some action only 15% of the time.
I'm used to "50% of the time" where I just mod the milliseconds of the current time and see if it's odd or even, but I don't think that's elegant.
How would I elegantly calculate "15% of the time"? Random number generator maybe?
Pseudo-code or any language are welcome.
Hope this is not subjective, since I'm looking for the "smartest" short-hand method of doing that.
Thanks.
Solution 1 (double)
get a random double between 0 and 1 (whatever language you use, there must be such a function)
do the action only if it is smaller than 0.15
Solution 2 (int)
You can also achieve this by creating a random int and see if it is dividable to 6 or 7. UPDATE --> This is not optimal.
You can produce a random number between 0 and 99, and check if it's less than 15:
if (rnd.Next(100) < 15) ...
You can also reduce the numbers, as 15/100 is the same as 3/20:
if (rnd.Next(20) < 3) ...
Random number generator would give you the best randomness. Generate a random between 0 and 1, test for < 0.15.
Using the time like that isn't true random, as it's influenced by processing time. If a task takes less than 1 millisecond to run, then the next random choice will be the same one.
That said, if you do want to use the millisecond-based method, do milliseconds % 20 < 3.
Just use a PRNG. Like always, it's a performance v. accuracy trade-off. I think making your own doing directly off the time is a waste of time (pun intended). You'll probably get biasing effects even worse than a run of the mill linear congruential generator.
In Java, I would use nextInt:
myRNG.nextInt(100) < 15
Or (mostly) equivalently:
myRNG.nextInt(20) < 3
There are way to get a random integer in other languages (multiple ways actually, depending how accurate it has to be).
Using modulo arithmetic you can easily do something every Xth run like so
(6 will give you ruthly 15%
if( microtime() % 6 === ) do it
other thing:
if(rand(0,1) >= 0.15) do it
boolean array[100] = {true:first 15, false:rest};
shuffle(array);
while(array.size > 0)
{
// pop first element of the array.
if(element == true)
do_action();
else
do_something_else();
}
// redo the whole thing again when no elements are left.
Here's one approach that combines randomness and a guarantee that eventually you get a positive outcome in a predictable range:
Have a target (15 in your case), a counter (initialized to 0), and a flag (initialized to false).
Accept a request.
If the counter is 15, reset the counter and the flag.
If the flag is true, return negative outcome.
Get a random true or false based on one of the methods described in other answers, but use a probability of 1/(15-counter).
Increment counter
If result is true, set flag to true and return a positive outcome. Else return a negative outcome.
Accept next request
This means that the first request has probability of 1/15 of return positive, but by the 15th request, if no positive result has been returned, there's a probability of 1/1 of a positive result.
This quote is from a great article about how to use a random number generator:
Note: Do NOT use
y = rand() % M;
as this focuses on the lower bits of
rand(). For linear congruential random
number generators, which rand() often
is, the lower bytes are much less
random than the higher bytes. In fact
the lowest bit cycles between 0 and 1.
Thus rand() may cycle between even and
odd (try it out). Note rand() does not
have to be a linear congruential
random number generator. It's
perfectly permissible for it to be
something better which does not have
this problem.
and it contains formulas and pseudo-code for
r = [0,1) = {r: 0 <= r < 1} real
x = [0,M) = {x: 0 <= x < M} real
y = [0,M) = {y: 0 <= y < M} integer
z = [1,M] = {z: 1 <= z <= M} integer
I would like to randomly iterate through a range. Each value will be visited only once and all values will eventually be visited. For example:
class Array
def shuffle
ret = dup
j = length
i = 0
while j > 1
r = i + rand(j)
ret[i], ret[r] = ret[r], ret[i]
i += 1
j -= 1
end
ret
end
end
(0..9).to_a.shuffle.each{|x| f(x)}
where f(x) is some function that operates on each value. A Fisher-Yates shuffle is used to efficiently provide random ordering.
My problem is that shuffle needs to operate on an array, which is not cool because I am working with astronomically large numbers. Ruby will quickly consume a large amount of RAM trying to create a monstrous array. Imagine replacing (0..9) with (0..99**99). This is also why the following code will not work:
tried = {} # store previous attempts
bigint = 99**99
bigint.times {
x = rand(bigint)
redo if tried[x]
tried[x] = true
f(x) # some function
}
This code is very naive and quickly runs out of memory as tried obtains more entries.
What sort of algorithm can accomplish what I am trying to do?
[Edit1]: Why do I want to do this? I'm trying to exhaust the search space of a hash algorithm for a N-length input string looking for partial collisions. Each number I generate is equivalent to a unique input string, entropy and all. Basically, I'm "counting" using a custom alphabet.
[Edit2]: This means that f(x) in the above examples is a method that generates a hash and compares it to a constant, target hash for partial collisions. I do not need to store the value of x after I call f(x) so memory should remain constant over time.
[Edit3/4/5/6]: Further clarification/fixes.
[Solution]: The following code is based on #bta's solution. For the sake of conciseness, next_prime is not shown. It produces acceptable randomness and only visits each number once. See the actual post for more details.
N = size_of_range
Q = ( 2 * N / (1 + Math.sqrt(5)) ).to_i.next_prime
START = rand(N)
x = START
nil until f( x = (x + Q) % N ) == START # assuming f(x) returns x
I just remembered a similar problem from a class I took years ago; that is, iterating (relatively) randomly through a set (completely exhausting it) given extremely tight memory constraints. If I'm remembering this correctly, our solution algorithm was something like this:
Define the range to be from 0 to
some number N
Generate a random starting point x[0] inside N
Generate an iterator Q less than N
Generate successive points x[n] by adding Q to
the previous point and wrapping around if needed. That
is, x[n+1] = (x[n] + Q) % N
Repeat until you generate a new point equal to the starting point.
The trick is to find an iterator that will let you traverse the entire range without generating the same value twice. If I'm remembering correctly, any relatively prime N and Q will work (the closer the number to the bounds of the range the less 'random' the input). In that case, a prime number that is not a factor of N should work. You can also swap bytes/nibbles in the resulting number to change the pattern with which the generated points "jump around" in N.
This algorithm only requires the starting point (x[0]), the current point (x[n]), the iterator value (Q), and the range limit (N) to be stored.
Perhaps someone else remembers this algorithm and can verify if I'm remembering it correctly?
As #Turtle answered, you problem doesn't have a solution. #KandadaBoggu and #bta solution gives you random numbers is some ranges which are or are not random. You get clusters of numbers.
But I don't know why you care about double occurence of the same number. If (0..99**99) is your range, then if you could generate 10^10 random numbers per second (if you have a 3 GHz processor and about 4 cores on which you generate one random number per CPU cycle - which is imposible, and ruby will even slow it down a lot), then it would take about 10^180 years to exhaust all the numbers. You have also probability about 10^-180 that two identical numbers will be generated during a whole year. Our universe has probably about 10^9 years, so if your computer could start calculation when the time began, then you would have probability about 10^-170 that two identical numbers were generated. In the other words - practicaly it is imposible and you don't have to care about it.
Even if you would use Jaguar (top 1 from www.top500.org supercomputers) with only this one task, you still need 10^174 years to get all numbers.
If you don't belive me, try
tried = {} # store previous attempts
bigint = 99**99
bigint.times {
x = rand(bigint)
puts "Oh, no!" if tried[x]
tried[x] = true
}
I'll buy you a beer if you will even once see "Oh, no!" on your screen during your life time :)
I could be wrong, but I don't think this is doable without storing some state. At the very least, you're going to need some state.
Even if you only use one bit per value (has this value been tried yes or no) then you will need X/8 bytes of memory to store the result (where X is the largest number). Assuming that you have 2GB of free memory, this would leave you with more than 16 million numbers.
Break the range in to manageable batches as shown below:
def range_walker range, batch_size = 100
size = (range.end - range.begin) + 1
n = size/batch_size
n.times do |i|
x = i * batch_size + range.begin
y = x + batch_size
(x...y).sort_by{rand}.each{|z| p z}
end
d = (range.end - size%batch_size + 1)
(d..range.end).sort_by{rand}.each{|z| p z }
end
You can further randomize solution by randomly choosing the batch for processing.
PS: This is a good problem for map-reduce. Each batch can be worked by independent nodes.
Reference:
Map-reduce in Ruby
you can randomly iterate an array with shuffle method
a = [1,2,3,4,5,6,7,8,9]
a.shuffle!
=> [5, 2, 8, 7, 3, 1, 6, 4, 9]
You want what's called a "full cycle iterator"...
Here is psudocode for the simplest version which is perfect for most uses...
function fullCycleStep(sample_size, last_value, random_seed = 31337, prime_number = 32452843) {
if last_value = null then last_value = random_seed % sample_size
return (last_value + prime_number) % sample_size
}
If you call this like so:
sample = 10
For i = 1 to sample
last_value = fullCycleStep(sample, last_value)
print last_value
next
It would generate random numbers, looping through all 10, never repeating If you change random_seed, which can be anything, or prime_number, which must be greater than, and not be evenly divisible by sample_size, you will get a new random order, but you will still never get a duplicate.
Database systems and other large-scale systems do this by writing the intermediate results of recursive sorts to a temp database file. That way, they can sort massive numbers of records while only keeping limited numbers of records in memory at any one time. This tends to be complicated in practice.
How "random" does your order have to be? If you don't need a specific input distribution, you could try a recursive scheme like this to minimize memory usage:
def gen_random_indices
# Assume your input range is (0..(10**3))
(0..3).sort_by{rand}.each do |a|
(0..3).sort_by{rand}.each do |b|
(0..3).sort_by{rand}.each do |c|
yield "#{a}#{b}#{c}".to_i
end
end
end
end
gen_random_indices do |idx|
run_test_with_index(idx)
end
Essentially, you are constructing the index by randomly generating one digit at a time. In the worst-case scenario, this will require enough memory to store 10 * (number of digits). You will encounter every number in the range (0..(10**3)) exactly once, but the order is only pseudo-random. That is, if the first loop sets a=1, then you will encounter all three-digit numbers of the form 1xx before you see the hundreds digit change.
The other downside is the need to manually construct the function to a specified depth. In your (0..(99**99)) case, this would likely be a problem (although I suppose you could write a script to generate the code for you). I'm sure there's probably a way to re-write this in a state-ful, recursive manner, but I can't think of it off the top of my head (ideas, anyone?).
[Edit]: Taking into account #klew and #Turtle's answers, the best I can hope for is batches of random (or close to random) numbers.
This is a recursive implementation of something similar to KandadaBoggu's solution. Basically, the search space (as a range) is partitioned into an array containing N equal-sized ranges. Each range is fed back in a random order as a new search space. This continues until the size of the range hits a lower bound. At this point the range is small enough to be converted into an array, shuffled, and checked.
Even though it is recursive, I haven't blown the stack yet. Instead, it errors out when attempting to partition a search space larger than about 10^19 keys. I has to do with the numbers being too large to convert to a long. It can probably be fixed:
# partition a range into an array of N equal-sized ranges
def partition(range, n)
ranges = []
first = range.first
last = range.last
length = last - first + 1
step = length / n # integer division
((first + step - 1)..last).step(step) { |i|
ranges << (first..i)
first = i + 1
}
# append any extra onto the last element
ranges[-1] = (ranges[-1].first)..last if last > step * ranges.length
ranges
end
I hope the code comments help shed some light on my original question.
pastebin: full source
Note: PW_LEN under # options can be changed to a lower number in order to get quicker results.
For a prohibitively large space, like
space = -10..1000000000000000000000
You can add this method to Range.
class Range
M127 = 170_141_183_460_469_231_731_687_303_715_884_105_727
def each_random(seed = 0)
return to_enum(__method__) { size } unless block_given?
unless first.kind_of? Integer
raise TypeError, "can't randomly iterate from #{first.class}"
end
sample_size = self.end - first + 1
sample_size -= 1 if exclude_end?
j = coprime sample_size
v = seed % sample_size
each do
v = (v + j) % sample_size
yield first + v
end
end
protected
def gcd(a,b)
b == 0 ? a : gcd(b, a % b)
end
def coprime(a, z = M127)
gcd(a, z) == 1 ? z : coprime(a, z + 1)
end
end
You could then
space.each_random { |i| puts i }
729815750697818944176
459631501395637888351
189447252093456832526
919263002791275776712
649078753489094720887
378894504186913665062
108710254884732609237
838526005582551553423
568341756280370497598
298157506978189441773
27973257676008385948
757789008373827330134
487604759071646274309
217420509769465218484
947236260467284162670
677052011165103106845
406867761862922051020
136683512560740995195
866499263258559939381
596315013956378883556
326130764654197827731
55946515352016771906
785762266049835716092
515578016747654660267
...
With a good amount of randomness so long as your space is a few orders smaller than M127.
Credit to #nick-steele and #bta for the approach.
This isn't really a Ruby-specific answer but I hope it's permitted. Andrew Kensler gives a C++ "permute()" function that does exactly this in his "Correlated Multi-Jittered Sampling" report.
As I understand it, the exact function he provides really only works if your "array" is up to size 2^27, but the general idea could be used for arrays of any size.
I'll do my best to sort of explain it. The first part is you need a hash that is reversible "for any power-of-two sized domain". Consider x = i + 1. No matter what x is, even if your integer overflows, you can determine what i was. More specifically, you can always determine the bottom n-bits of i from the bottom n-bits of x. Addition is a reversible hash operation, as is multiplication by an odd number, as is doing a bitwise xor by a constant. If you know a specific power-of-two domain, you can scramble bits in that domain. E.g. x ^= (x & 0xFF) >> 5) is valid for the 16-bit domain. You can specify that domain with a mask, e.g. mask = 0xFF, and your hash function becomes x = hash(i, mask). Of course you can add a "seed" value into that hash function to get different randomizations. Kensler lays out more valid operations in the paper.
So you have a reversible function x = hash(i, mask, seed). The problem is that if you hash your index, you might end up with a value that is larger than your array size, i.e. your "domain". You can't just modulo this or you'll get collisions.
The reversible hash is the key to using a technique called "cycle walking", introduced in "Ciphers with Arbitrary Finite Domains". Because the hash is reversible (i.e. 1-to-1), you can just repeatedly apply the same hash until your hashed value is smaller than your array! Because you're applying the same hash, and the mapping is one-to-one, whatever value you end up on will map back to exactly one index, so you don't have collisions. So your function could look something like this for 32-bit integers (pseudocode):
fun permute(i, length, seed) {
i = hash(i, 0xFFFF, seed)
while(i >= length): i = hash(i, 0xFFFF, seed)
return i
}
It could take a lot of hashes to get to your domain, so Kensler does a simple trick: he keeps the hash within the domain of the next power of two, which makes it require very few iterations (~2 on average), by masking out the unnecessary bits. The final algorithm looks like this:
fun next_pow_2(length) {
# This implementation is for clarity.
# See Kensler's paper for one way to do it fast.
p = 1
while (p < length): p *= 2
return p
}
permute(i, length, seed) {
mask = next_pow_2(length)-1
i = hash(i, mask, seed) & mask
while(i >= length): i = hash(i, mask, seed) & mask
return i
}
And that's it! Obviously the important thing here is choosing a good hash function, which Kensler provides in the paper but I wanted to break down the explanation. If you want to have different random permutations each time, you can add a "seed" value to the permute function which then gets passed to the hash function.