I have a large dataset of items in hbase that I want to load into a spark rdd for processing. My understanding is that hbase is optimized for low-latency single item searches on hadoop, so I am wondering if it's possible to efficiently query for 100 million items in hbase (~10Tb in size)?
Here is some general advice on making Spark and HBase work together.
Data colocation and partitioning
Spark avoids shuffling : if your Spark workers and HBase regions are located on the same machines, Spark will create partitions according to regions.
A good region split in HBase will map to a good partitioning in Spark.
If possible, consider working on your rowkeys and region splits.
Operations in Spark vs operations in HBase
Rule of thumb : use HBase scans only, and do everything else with Spark.
To avoid shuffling in your Spark operations, you can consider working on your partitions. For example : you can join 2 Spark rdd from HBase scans on their Rowkey or Rowkey prefix without any shuffling.
Hbase configuration tweeks
This discussion is a bit old (some configurations are not up to date) but still interesting : http://community.cloudera.com/t5/Storage-Random-Access-HDFS/How-to-optimise-Full-Table-Scan-FTS-in-HBase/td-p/97
And the link below has also some leads:
http://blog.asquareb.com/blog/2015/01/01/configuration-parameters-that-can-influence-hbase-performance/
You might find multiple sources (including the ones above) suggesting to change the scanner cache config, but this holds only with HBase < 1.x
We had this exact question at Splice Machine. We found the following based on our tests.
HBase had performance challenges if you attempted to perform remote scans from spark/mapreduce.
The large scans hurt performance of ongoing small scans by forcing garbage collection.
There was not a clear resource management dividing line between OLTP and OLAP queries and resources.
We ended up writing a custom reader that reads the HFiles directly from HDFS and performs incremental deltas with the memstore during scans. With this, Spark could perform quick enough for most OLAP applications. We also separated the resource management so the OLAP resources were allocated via YARN (On Premise) or Mesos (Cloud) so they would not disturb normal OLTP apps.
I wish you luck on your endeavor. Splice Machine is open source and you are welcome to checkout out our code and approach.
I know that HBASE is a columnar database that stores structured data of tables into HDFS by column instead of by row. I know that Spark can read/write from HDFS and that there is some HBASE-connector for Spark that can now also read-write HBASE tables.
Questions:
1) What are the added capabilities brought by layering Spark on top of HBASE instead of using HBASE solely? It depends only on programmer capabilities or is there any performance reason to do that? Are there things Spark can do and HBASE solely can't do?
2) Stemming from previous question, when you should add HBASE between HDFS and SPARK instead of using directly HDFS?
1) What are the added capabilities brought by layering Spark on top of
HBASE instead of using HBASE solely? It depends only on programmer
capabilities or is there any performance reason to do that? Are there
things Spark can do and HBASE solely can't do?
At Splice Machine, we use Spark for our analytics on top of HBase. HBase does not have an execution engine and spark provides a competent execution engine on top of HBase (Intermediate results, Relational Algebra, etc.). HBase is a MVCC storage structure and Spark is an execution engine. They are natural complements to one another.
2) Stemming from previous question, when you should add HBASE between
HDFS and SPARK instead of using directly HDFS?
Small reads, concurrent write/read patterns, incremental updates (most etl)
Good luck...
I'd say that using distributed computing engines like Apache Hadoop or Apache Spark imply basically a full scan of any data source. That's the whole point of processing the data all at once.
HBase is good at cherry-picking particular records, while HDFS certainly much more performant with full scans.
When you do a write to HBase from Hadoop or Spark, you won't write it to database is usual - it's hugely slow! Instead, you want to write the data to HFiles directly and then bulk import them into.
The reason people invent SQL databases is because HDDs were very very slow at that time. It took the most clever people tens of years to invent different kind of indexes to clever use the bottleneck resource (disk). Now people try to invent NoSQL - we like associative arrays and we need them be distributed (that's what essentially what NoSQL is) - they're very simple and very convenient. But in todays world with SSDs being cheap no one needs databases - file system is good enough in most cases. The one thing, though, is that it has to be distributed to keep up the distributed computations.
Answering original questions:
These are two different tools for completely different problems.
I think if you use Apache Spark for data analysis, you have to avoid HBase (Cassandra or any other database). They can be useful to keep aggregated data to build reports or picking specific records about users or items, but that's happen after the processing.
Hbase is a No SQL data base that works well to fetch your data in a fast fashion. Though it is a db, it used large number of Hfile(similar to HDFS files) to store your data and a low latency acces.
So use Hbase when it suits a requirement that your data needs to accessed by other big data.
Spark on the other hand, is the in-memory distributed computing engine which have connectivity to hdfs, hbase, hive, postgreSQL,json files,parquet files etc.
There is no considerable performance change while reading from a HDFS file or Hbase upto some gbs. After that Hbase connectivity is becoming faster....
Hive provides an abstraction layer over java Map Reduce job , so it should have performance issue when compared to Java Map Reduce Jobs.
Do we have any benchmark to compare the performance of Hive Query & Java Map Reduce Jobs ?
Actual use-cases scenario with run time data , would be real help .
Thanks
Your premise that " so it should have performance issue when compared to Java Map Reduce Jobs." is wrong......
Hive (and Pig and crunch and other map/reduce abstractions) would be slower than a fully tuned hand written map/reduce.
However, unless you're experienced with the Hadoop and map/reduce, the chances are, that the map/reduce you'd write would be slower on non-trivial queries vs. what Hive et. al. will do
I did some small test in a VM some time back and I couldn't really notice any difference. Maybe Hive was a few seconds slower sometimes but I can't really tell if that was Hives performance or my VM that was hanging due to low memory. I think that one thing to keep in mind is, Hive will always determine the fastest way to do a MapReduce job. Now, when you write small MapReduce jobs, you'll probably be able to find the fastest way yourself. But with large complex jobs (with joins, etc.) will you always be able to compete with Hive?
Also, the time you need to write a MapReduce job of multiple classes and methods seems to take ages in comparison with writing a HiveQL query.
On the other hand, I had the feeling that when I wrote the job myself it was easier to know what was going on.
If you've small dataset on your machine and want to process using Apache Hive, execution of Job on small dataset would be slow as compared to process the same dataset using Hadoop MapReduce. Performance of hive slightly degrades, if you consider small datasets. Whereas, for large datasets, Apache Hive performace would be better as compared to MapReduce.
While processing datasets in MapReduce, data-set is stored in HDFS. MapReduce has no database of its own, as Hive has meta-store. From Hive's Metastore, data can be shared with Impala, Beeline, JDBC and ODBC drivers.
What are the benefits of using either Hadoop or HBase or Hive ?
From my understanding, HBase avoids using map-reduce and has a column oriented storage on top of HDFS. Hive is a sql-like interface for Hadoop and HBase.
I would also like to know how Hive compares with Pig.
MapReduce is just a computing framework. HBase has nothing to do with it. That said, you can efficiently put or fetch data to/from HBase by writing MapReduce jobs. Alternatively you can write sequential programs using other HBase APIs, such as Java, to put or fetch the data. But we use Hadoop, HBase etc to deal with gigantic amounts of data, so that doesn't make much sense. Using normal sequential programs would be highly inefficient when your data is too huge.
Coming back to the first part of your question, Hadoop is basically 2 things: a Distributed FileSystem (HDFS) + a Computation or Processing framework (MapReduce). Like all other FS, HDFS also provides us storage, but in a fault tolerant manner with high throughput and lower risk of data loss (because of the replication). But, being a FS, HDFS lacks random read and write access. This is where HBase comes into picture. It's a distributed, scalable, big data store, modelled after Google's BigTable. It stores data as key/value pairs.
Coming to Hive. It provides us data warehousing facilities on top of an existing Hadoop cluster. Along with that it provides an SQL like interface which makes your work easier, in case you are coming from an SQL background. You can create tables in Hive and store data there. Along with that you can even map your existing HBase tables to Hive and operate on them.
While Pig is basically a dataflow language that allows us to process enormous amounts of data very easily and quickly. Pig basically has 2 parts: the Pig Interpreter and the language, PigLatin. You write Pig script in PigLatin and using Pig interpreter process them. Pig makes our life a lot easier, otherwise writing MapReduce is always not easy. In fact in some cases it can really become a pain.
I had written an article on a short comparison of different tools of the Hadoop ecosystem some time ago. It's not an in depth comparison, but a short intro to each of these tools which can help you to get started.
(Just to add on to my answer. No self promotion intended)
Both Hive and Pig queries get converted into MapReduce jobs under the hood.
HTH
I implemented a Hive Data platform recently in my firm and can speak to it in first person since I was a one man team.
Objective
To have the daily web log files collected from 350+ servers daily queryable thru some SQL like language
To replace daily aggregation data generated thru MySQL with Hive
Build Custom reports thru queries in Hive
Architecture Options
I benchmarked the following options:
Hive+HDFS
Hive+HBase - queries were too slow so I dumped this option
Design
Daily log Files were transported to HDFS
MR jobs parsed these log files and output files in HDFS
Create Hive tables with partitions and locations pointing to HDFS locations
Create Hive query scripts (call it HQL if you like as diff from SQL) that in turn ran MR jobs in the background and generated aggregation data
Put all these steps into an Oozie workflow - scheduled with Daily Oozie Coordinator
Summary
HBase is like a Map. If you know the key, you can instantly get the value. But if you want to know how many integer keys in Hbase are between 1000000 and 2000000 that is not suitable for Hbase alone.
If you have data that needs to be aggregated, rolled up, analyzed across rows then consider Hive.
Hopefully this helps.
Hive actually rocks ...I know, I have lived it for 12 months now... So does HBase...
Hadoop is a a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models.
There are four main modules in Hadoop.
Hadoop Common: The common utilities that support the other Hadoop modules.
Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application data.
Hadoop YARN: A framework for job scheduling and cluster resource management.
Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.
Before going further, Let's note that we have three different types of data.
Structured: Structured data has strong schema and schema will be checked during write & read operation. e.g. Data in RDBMS systems like Oracle, MySQL Server etc.
Unstructured: Data does not have any structure and it can be any form - Web server logs, E-Mail, Images etc.
Semi-structured: Data is not strictly structured but have some structure. e.g. XML files.
Depending on type of data to be processed, we have to choose right technology.
Some more projects, which are part of Hadoop:
HBase™: A scalable, distributed database that supports structured data storage for large tables.
Hive™: A data warehouse infrastructure that provides data summarization and ad-hoc querying.
Pig™: A high-level data-flow language and execution framework for parallel computation.
Hive Vs PIG comparison can be found at this article and my other post at this SE question.
HBASE won't replace Map Reduce. HBase is scalable distributed database & Map Reduce is programming model for distributed processing of data. Map Reduce may act on data in HBASE in processing.
You can use HIVE/HBASE for structured/semi-structured data and process it with Hadoop Map Reduce
You can use SQOOP to import structured data from traditional RDBMS database Oracle, SQL Server etc and process it with Hadoop Map Reduce
You can use FLUME for processing Un-structured data and process with Hadoop Map Reduce
Have a look at: Hadoop Use Cases.
Hive should be used for analytical querying of data collected over a period of time. e.g Calculate trends, summarize website logs but it can't be used for real time queries.
HBase fits for real-time querying of Big Data. Facebook use it for messaging and real-time analytics.
PIG can be used to construct dataflows, run a scheduled jobs, crunch big volumes of data, aggregate/summarize it and store into relation database systems. Good for ad-hoc analysis.
Hive can be used for ad-hoc data analysis but it can't support all un-structured data formats unlike PIG.
Consider that you work with RDBMS and have to select what to use - full table scans, or index access - but only one of them.
If you select full table scan - use hive. If index access - HBase.
Understanding in depth
Hadoop
Hadoop is an open source project of the Apache foundation. It is a framework written in Java, originally developed by Doug Cutting in 2005. It was created to support distribution for Nutch, the text search engine. Hadoop uses Google's Map Reduce and Google File System Technologies as its foundation.
Features of Hadoop
It is optimized to handle massive quantities of structured, semi-structured and unstructured data using commodity hardware.
It has shared nothing architecture.
It replicates its data into multiple computers so that if one goes down, the data can still be processed from another machine that stores its replica.
Hadoop is for high throughput rather than low latency. It is a batch operation handling massive quantities of data; therefore the response time is not immediate.
It complements Online Transaction Processing and Online Analytical Processing. However, it is not a replacement for a RDBMS.
It is not good when work cannot be parallelized or when there are dependencies within the data.
It is not good for processing small files. It works best with huge data files and data sets.
Versions of Hadoop
There are two versions of Hadoop available :
Hadoop 1.0
Hadoop 2.0
Hadoop 1.0
It has two main parts :
1. Data Storage Framework
It is a general-purpose file system called Hadoop Distributed File System (HDFS).
HDFS is schema-less
It simply stores data files and these data files can be in just about any format.
The idea is to store files as close to their original form as possible.
This in turn provides the business units and the organization the much needed flexibility and agility without being overly worried by what it can implement.
2. Data Processing Framework
This is a simple functional programming model initially popularized by Google as MapReduce.
It essentially uses two functions: MAP and REDUCE to process data.
The "Mappers" take in a set of key-value pairs and generate intermediate data (which is another list of key-value pairs).
The "Reducers" then act on this input to produce the output data.
The two functions seemingly work in isolation with one another, thus enabling the processing to be highly distributed in highly parallel, fault-tolerance and scalable way.
Limitations of Hadoop 1.0
The first limitation was the requirement of MapReduce programming expertise.
It supported only batch processing which although is suitable for tasks such as log analysis, large scale data mining projects but pretty much unsuitable for other kinds of projects.
One major limitation was that Hadoop 1.0 was tightly computationally coupled with MapReduce, which meant that the established data management vendors where left with two opinions:
Either rewrite their functionality in MapReduce so that it could be
executed in Hadoop or
Extract data from HDFS or process it outside of Hadoop.
None of the options were viable as it led to process inefficiencies caused by data being moved in and out of the Hadoop cluster.
Hadoop 2.0
In Hadoop 2.0, HDFS continues to be data storage framework.
However, a new and seperate resource management framework called Yet Another Resource Negotiater (YARN) has been added.
Any application capable of dividing itself into parallel tasks is supported by YARN.
YARN coordinates the allocation of subtasks of the submitted application, thereby further enhancing the flexibility, scalability and efficiency of applications.
It works by having an Application Master in place of Job Tracker, running applications on resources governed by new Node Manager.
ApplicationMaster is able to run any application and not just MapReduce.
This means it does not only support batch processing but also real-time processing. MapReduce is no longer the only data processing option.
Advantages of Hadoop
It stores data in its native from. There is no structure imposed while keying in data or storing data. HDFS is schema less. It is only later when the data needs to be processed that the structure is imposed on the raw data.
It is scalable. Hadoop can store and distribute very large datasets across hundreds of inexpensive servers that operate in parallel.
It is resilient to failure. Hadoop is fault tolerance. It practices replication of data diligently which means whenever data is sent to any node, the same data also gets replicated to other nodes in the cluster, thereby ensuring that in event of node failure,there will always be another copy of data available for use.
It is flexible. One of the key advantages of Hadoop is that it can work with any kind of data: structured, unstructured or semi-structured. Also, the processing is extremely fast in Hadoop owing to the "move code to data" paradigm.
Hadoop Ecosystem
Following are the components of Hadoop ecosystem:
HDFS: Hadoop Distributed File System. It simply stores data files as close to the original form as possible.
HBase: It is Hadoop's database and compares well with an RDBMS. It supports structured data storage for large tables.
Hive: It enables analysis of large datasets using a language very similar to standard ANSI SQL, which implies that anyone familier with SQL should be able to access data on a Hadoop cluster.
Pig: It is an easy to understand data flow language. It helps with analysis of large datasets which is quite the order with Hadoop. Pig scripts are automatically converted to MapReduce jobs by the Pig interpreter.
ZooKeeper: It is a coordination service for distributed applications.
Oozie: It is a workflow schedular system to manage Apache Hadoop jobs.
Mahout: It is a scalable machine learning and data mining library.
Chukwa: It is data collection system for managing large distributed system.
Sqoop: It is used to transfer bulk data between Hadoop and structured data stores such as relational databases.
Ambari: It is a web based tool for provisioning, managing and monitoring Hadoop clusters.
Hive
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data and makes querying and analyzing easy.
Hive is not
A relational database
A design for Online Transaction Processing (OLTP).
A language for real-time queries and row-level updates.
Features of Hive
It stores schema in database and processed data into HDFS.
It is designed for OLAP.
It provides SQL type language for querying called HiveQL or HQL.
It is familier, fast, scalable and extensible.
Hive Architecture
The following components are contained in Hive Architecture:
User Interface: Hive is a data warehouse infrastructure that can create interaction between user and HDFS. The User Interfaces that Hive supports are Hive Web UI, Hive Command line and Hive HD Insight(In Windows Server).
MetaStore: Hive chooses respective database servers to store the schema or Metadata of tables, databases, columns in a table, their data types and HDFS mapping.
HiveQL Process Engine: HiveQL is similar to SQL for querying on schema info on the Metastore. It is one of the replacements of traditional approach for MapReduce program. Instead of writing MapReduce in Java, we can write a query for MapReduce and process it.
Exceution Engine: The conjunction part of HiveQL process engine and MapReduce is the Hive Execution Engine. Execution engine processes the query and generates results as same as MapReduce results. It uses the flavor of MapReduce.
HDFS or HBase: Hadoop Distributed File System or HBase are the data storage techniques to store data into file system.
For a Comparison Between Hadoop Vs Cassandra/HBase read this post.
Basically HBase enables really fast read and writes with scalability. How fast and scalable? Facebook uses it to manage its user statuses, photos, chat messages etc. HBase is so fast sometimes stacks have been developed by Facebook to use HBase as the data store for Hive itself.
Where As Hive is more like a Data Warehousing solution. You can use a syntax similar to SQL to query Hive contents which results in a Map Reduce job. Not ideal for fast, transactional systems.
I worked on Lambda architecture processing Real time and Batch loads.
Real time processing is needed where fast decisions need to be taken in case of Fire alarm send by sensor or fraud detection in case of banking transactions.
Batch processing is needed to summarize data which can be feed into BI systems.
we used Hadoop ecosystem technologies for above applications.
Real Time Processing
Apache Storm: Stream Data processing, Rule application
HBase: Datastore for serving Realtime dashboard
Batch Processing
Hadoop: Crunching huge chunk of data. 360 degrees overview or adding context to events. Interfaces or frameworks like Pig, MR, Spark, Hive, Shark help in computing. This layer needs scheduler for which Oozie is good option.
Event Handling layer
Apache Kafka was first layer to consume high velocity events from sensor.
Kafka serves both Real Time and Batch analytics data flow through Linkedin connectors.
First of all we should get clear that Hadoop was created as a faster alternative to RDBMS. To process large amount of data at a very fast rate which earlier took a lot of time in RDBMS.
Now one should know the two terms :
Structured Data : This is the data that we used in traditional RDBMS and is divided into well defined structures.
Unstructured Data : This is important to understand, about 80% of the world data is unstructured or semi structured. These are the data which are on its raw form and cannot be processed using RDMS. Example : facebook, twitter data. (http://www.dummies.com/how-to/content/unstructured-data-in-a-big-data-environment.html).
So, large amount of data was being generated in the last few years and the data was mostly unstructured, that gave birth to HADOOP. It was mainly used for very large amount of data that takes unfeasible amount of time using RDBMS. It had many drawbacks, that it could not be used for comparatively small data in real time but they have managed to remove its drawbacks in the newer version.
Before going further I would like to tell that a new Big Data tool is created when they see a fault on the previous tools. So, whichever tool you will see that is created has been done to overcome the problem of the previous tools.
Hadoop can be simply said as two things : Mapreduce and HDFS. Mapreduce is where the processing takes place and HDFS is the DataBase where data is stored. This structure followed WORM principal i.e. write once read multiple times. So, once we have stored data in HDFS, we cannot make changes. This led to the creation of HBASE, a NOSQL product where we can make changes in the data also after writing it once.
But with time we saw that Hadoop had many faults and for that we created different environment over the Hadoop structure. PIG and HIVE are two popular examples.
HIVE was created for people with SQL background. The queries written is similar to SQL named as HIVEQL. HIVE was developed to process completely structured data. It is not used for ustructured data.
PIG on the other hand has its own query language i.e. PIG LATIN. It can be used for both structured as well as unstructured data.
Moving to the difference as when to use HIVE and when to use PIG, I don't think anyone other than the architect of PIG could say. Follow the link :
https://developer.yahoo.com/blogs/hadoop/comparing-pig-latin-sql-constructing-data-processing-pipelines-444.html
Let me try to answer in few words.
Hadoop is an eco-system which comprises of all other tools. So, you can't compare Hadoop but you can compare MapReduce.
Here are my few cents:
Hive: If your need is very SQLish meaning your problem statement can be catered by SQL, then the easiest thing to do would be to use Hive. The other case, when you would use hive is when you want a server to have certain structure of data.
Pig: If you are comfortable with Pig Latin and you need is more of the data pipelines. Also, your data lacks structure. In those cases, you could use Pig. Honestly there is not much difference between Hive & Pig with respect to the use cases.
MapReduce: If your problem can not be solved by using SQL straight, you first should try to create UDF for Hive & Pig and then if the UDF is not solving the problem then getting it done via MapReduce makes sense.
Pig: it is better to handle files and cleaning data
example: removing null values,string handling,unnecessary values
Hive: for querying on cleaned data
1.We are using Hadoop for storing Large data (i.e.structure,Unstructure and Semistructure data ) in the form file format like txt,csv.
2.If We want columnar Updations in our data then we are using Hbase tool
3.In case of Hive , we are storing Big data which is in structured format
and in addition to that we are providing Analysis on that data.
4.Pig is tool which is using Pig latin language to analyze data which is in any format(structure,semistructure and unstructure).
Cleansing Data in Pig is very easy,a suitable approach would be cleansing data through pig and then processing data through hive and later uploading it to hdfs.
Use of Hive, Hbase and Pig w.r.t. my real time experience in different projects.
Hive is used mostly for:
Analytics purpose where you need to do analysis on history data
Generating business reports based on certain columns
Efficiently managing the data together with metadata information
Joining tables on certain columns which are frequently used by using bucketing concept
Efficient Storing and querying using partitioning concept
Not useful for transaction/row level operations like update, delete, etc.
Pig is mostly used for:
Frequent data analysis on huge data
Generating aggregated values/counts on huge data
Generating enterprise level key performance indicators very frequently
Hbase is mostly used:
For real time processing of data
For efficiently managing Complex and nested schema
For real time querying and faster result
For easy Scalability with columns
Useful for transaction/row level operations like update, delete, etc.
Short answer to this question is -
Hadoop - Is Framework which facilitates distributed file system and programming model which allow us to store humongous sized data and process data in distributed fashion very efficiently and with very less processing time compare to traditional approaches.
(HDFS - Hadoop Distributed File system)
(Map Reduce - Programming Model for distributed processing)
Hive - Is query language which allows to read/write data from Hadoop distributed file system in a very popular SQL like fashion. This made life easier for many non-programming background people as they don't have to write Map-Reduce program anymore except for very complex scenarios where Hive is not supported.
Hbase - Is Columnar NoSQL Database. Underlying storage layer for Hbase is again HDFS. Most important use case for this database is to be able to store billion's of rows with million's of columns. Low latency feature of Hbase helps faster and random access of record over distributed data, is very important feature to make it useful for complex projects like Recommender Engines. Also it's record level versioning capability allow user to store transactional data very efficiently (this solves the problem of updating records we have with HDFS and Hive)
Hope this is helpful to quickly understand the above 3 features.
I believe this thread hasn't done in particular justice to HBase and Pig in particular. While I believe Hadoop is the choice of the distributed, resilient file-system for big-data lake implementations, the choice between HBase and Hive is in particular well-segregated.
As in, a lot of use-cases have a particular requirement of SQL like or No-SQL like interfaces. With Phoenix on top of HBase, though SQL like capabilities is certainly achievable, however, the performance, third-party integrations, dashboard update are a kind of painful experiences. However, it's an excellent choice for databases requiring horizontal scaling.
Pig is in particular excellent for non-recursive batch like computations or ETL pipelining (somewhere, where it outperforms Spark by a comfortable distance). Also, it's high-level dataflow implementations is an excellent choice for batch querying and scripting. The choice between Pig and Hive is also pivoted on the need of the client or server-side scripting, required file formats, etc. Pig supports Avro file format which is not true in the case of Hive. The choice for 'procedural dataflow language' vs 'declarative data flow language' is also a strong argument for the choice between pig and hive.
Hadoop:
HDFS stands for Hadoop Distributed File System which uses Computational processing model Map-Reduce.
HBase:
HBase is Key-Value storage, good for reading and writing in near real time.
Hive:
Hive is used for data extraction from the HDFS using SQL-like syntax. Hive use HQL language.
Pig:
Pig is a data flow language for creating ETL. It's an scripting language.
Pig is mostly dead after Cloudera got rid of it in CDP. Also last release on Apache was 19 June, 2017: release 0.17.0 so basically no committers actively working anymore. Use Spark or Python way more powerful than Pig.
I'm interested in finding out how the recently-released (http://mirror.facebook.com/facebook/hive/hadoop-0.17/) Hive compares to HBase in terms of performance. The SQL-like interface used by Hive is very much preferable to the HBase API we have implemented.
It's hard to find much about Hive, but I found this snippet on the Hive site that leans heavily in favor of HBase (bold added):
Hive is based on Hadoop which is a batch processing system. Accordingly, this system does not and cannot promise low latencies on queries. The paradigm here is strictly of submitting jobs and being notified when the jobs are completed as opposed to real time queries. As a result it should not be compared with systems like Oracle where analysis is done on a significantly smaller amount of data but the analysis proceeds much more iteratively with the response times between iterations being less than a few minutes. For Hive queries response times for even the smallest jobs can be of the order of 5-10 minutes and for larger jobs this may even run into hours.
Since HBase and HyperTable are all about performance (being modeled on Google's BigTable), they sound like they would certainly be much faster than Hive, at the cost of functionality and a higher learning curve (e.g., they don't have joins or the SQL-like syntax).
From one perspective, Hive consists of five main components: a SQL-like grammar and parser, a query planner, a query execution engine, a metadata repository, and a columnar storage layout. Its primary focus is data warehouse-style analytical workloads, so low latency retrieval of values by key is not necessary.
HBase has its own metadata repository and columnar storage layout. It is possible to author HiveQL queries over HBase tables, allowing HBase to take advantage of Hive's grammar and parser, query planner, and query execution engine. See http://wiki.apache.org/hadoop/Hive/HBaseIntegration for more details.
Hive is an analytics tool. Just like pig, it was designed for ad hoc batch processing of potentially enourmous amounts of data by leveraging map reduce. Think terrabytes. Imagine trying to do that in a relational database...
HBase is a column based key value store based on BigTable. You can't do queries per se, though you can run map reduce jobs over HBase. It's primary use case is fetching rows by key, or scanning ranges of rows. A major feature is being able to have data locality when scanning across ranges of row keys for a 'family' of columns.
To my humble knowledge, Hive is more comparable to Pig. Hive is SQL-like and Pig is script based.
Hive seems to be more complicated with query optimization and execution engines as well as requires end user needs to specify schema parameters(partition etc).
Both are intend to process text files, or sequenceFiles.
HBase is for key value data store and retrieve...you can scan or filter on those key value pairs(rows). You can not do queries on (key,value) rows.
Hive and HBase are used for different purpose.
Hive:
Pros:
Apache Hive is a data warehouse infrastructure built on top of Hadoop.
It allows for querying data stored on HDFS for analysis via HQL, an SQL-like language, which will be converted into series of Map Reduce Jobs
It only runs batch processes on Hadoop.
it’s JDBC compliant, it also integrates with existing SQL based tools
Hive supports partitions
It supports analytical querying of data collected over a period of time
Cons:
It does not currently support update statements
It should be provided with a predefined schema to map files and directories into columns
HBase:
Pros:
A scalable, distributed database that supports structured data storage for large tables
It provides random, real time read/write access to your Big Data. HBase operations run in real-time on its database rather than MapReduce jobs
it supports partitions to tables, and tables are further split into column families
Scales horizontally with huge amount of data by using Hadoop
Provides key based access to data when storing or retrieving. It supports add or update rows.
Supports versoning of data.
Cons:
HBase queries are written in a custom language that needs to be learned
HBase isn’t fully ACID compliant
It can't be used with complicated access patterns (such as joins)
It is also not a complete substitute for HDFS when doing large batch MapReduce
Summary:
Hive can be used for analytical queries while HBase for real-time querying. Data can even be read and written from Hive to HBase and back again.
As of the most recent Hive releases, a lot has changed that requires a small update as Hive and HBase are now integrated. What this means is that Hive can be used as a query layer to an HBase datastore. Now if people are looking for alternative HBase interfaces, Pig also offers a really nice way of loading and storing HBase data. Additionally, it looks like Cloudera Impala may offer substantial performance Hive based queries on top of HBase. They are claim up to 45x faster queries over traditional Hive setups.
To compare Hive with Hbase, I'd like to recall the definition below:
A database designed to handle transactions isn’t designed to handle
analytics. It isn’t structured to do analytics well. A data warehouse,
on the other hand, is structured to make analytics fast and easy.
Hive is a data warehouse infrastructure built on top of Hadoop which is suitable for long running ETL jobs.
Hbase is a database designed to handle real time transactions