Related
I'm working with arrays of integer, all of the same size l.
I have a static set of them and I need to build a function to efficiently look them up.
The tricky part is that the elements in the array I need to search might be off by 1.
Given the arrays {A_1, A_2, ..., A_n}, and an array S, I need a function search such that:
search(S)=x iff ∀i: A_x[i] ∈ {S[i]-1, S[i], S[i]+1}.
A possible solution is treating each vector as a point in an l-dimensional space and looking for the closest point, but it'd cost something like O(l*n) in space and O(l*log(n)) in time.
Would there be a solution with a better space complexity (and/or time, of course)?
My arrays are pretty different from each other, and good heuristics might be enough.
Consider a search array S with the values:
S = [s1, s2, s3, ... , sl]
and the average value:
s̅ = (s1 + s2 + s3 + ... + sl) / l
and two matching arrays, one where every value is one greater than the corresponding value in S, and one where very value is one smaller:
A1 = [s1+1, s2+1, s3+1, ... , sl+1]
A2 = [s1−1, s2−1, s3−1, ... , sl−1]
These two arrays would have the average values:
a̅1 = (s1 + 1 + s2 + 1 + s3 + 1 + ... + sl + 1) / l = s̅ + 1
a̅2 = (s1 − 1 + s2 − 1 + s3 − 1 + ... + sl − 1) / l = s̅ − 1
So every matching array, whose values are at most 1 away from the corresponding values in the search array, has an average value that is at most 1 away from the average value of the search array.
If you calculate and store the average value of each array, and then sort the arrays based on their average value (or use an extra data structure that enables you to find all arrays with a certain average value), you can quickly identify which arrays have an average value within 1 of the search array's average value. Depending on the data, this could drastically reduce the number of arrays you have to check for similarity.
After having pre-processed the arrays and stores their average values, performing a search would mean iterating over the search array to calculate the average value, looking up which arrays have a similar average value, and then iterating over those arrays to check every value.
If you expect many arrays to have a similar average value, you could use several averages to detect arrays that are locally very different but similar on average. You could e.g. calculate these four averages:
the first half of the array
the second half of the array
the odd-numbered elements
the even-numbered elements
Analysis of the actual data should give you more information about how to divide the array and combine different averages to be most effective.
If the total sum of an array cannot exceed the integer size, you could store the total sum of each array, and check whether it is within l of the total sum of the search array, instead of using averages. This would avoid having to use floats and divisions.
(You could expand this idea by also storing other properties which are easily calculated and don't take up much space to store, such as the highest and lowest value, the biggest jump, ... They could help create a fingerprint of each array that is near-unique, depending on the data.)
If the number of dimensions is not very small, then probably the best solution will be to build a decision tree that recursively partitions the set along different dimensions.
Each node, including the root, would be a hash table from the possible values for some dimension to either:
The list of points that match that value within tolerance, if it's small enough; or
Those same points in a similar tree partitioning on the remaining dimensions.
Since each level completely eliminates one dimension, the depth of the tree is at most L, and search takes O(L) time.
The order in which the dimensions are chosen along each path is important, of course -- the wrong choice could explode the size of the data structure, with each point appearing many times.
Since your points are "pretty different", though, it should be possible to build a tree with minimal duplication. I would try the ID3 algorithm to choose the dimensions: https://en.wikipedia.org/wiki/ID3_algorithm. That basically means you greedily choose the dimension that maximizes the overall reduction in set size, using an entropy metric.
I would personally create something like a Trie for the lookup. I said "something like" because we have up to 3 values per index that might match. So we aren't creating a decision tree, but a DAG. Where sometimes we have choices.
That is straightforward and will run (with backtracking) in maximum time O(k*l).
But here is the trick. Whenever we see a choice of matching states that we can go into next, we can create a merged state which tries all of them. We can create a few or a lot of these merged states. Each one will defer a choice by 1 step. And if we're careful to keep track of which merged states we've created, we can reuse the same one over and over again.
In theory we can be generating partial matches for somewhat arbitrary subsets of our arrays. Which can grow exponentially in the number of arrays. In practice are likely to only wind up with a few of these merged states. But still we can guarantee a tradeoff - more states up front runs faster later. So we optimize until we are done or have hit the limit of how much data we want to have.
Here is some proof of concept code for this in Python. It will likely build the matcher in time O(n*l) and match in time O(l). However it is only guaranteed to build the matcher in time O(n^2 * l^2) and match in time O(n * l).
import pprint
class Matcher:
def __init__ (self, arrays, optimize_limit=None):
# These are the partial states we could be in during a match.
self.states = [{}]
# By state, this is what we would be trying to match.
self.state_for = ['start']
# By combination we could try to match for, which state it is.
self.comb_state = {'start': 0}
for i in range(len(arrays)):
arr = arrays[i]
# Set up "matched the end".
state_index = len(self.states)
this_state = {'matched': [i]}
self.comb_state[(i, len(arr))] = state_index
self.states.append(this_state)
self.state_for.append((i, len(arr)))
for j in reversed(range(len(arr))):
this_for = (i, j)
prev_state = {}
if 0 == j:
prev_state = self.states[0]
matching_values = set((arr[k] for k in range(max(j-1, 0), min(j+2, len(arr)))))
for v in matching_values:
if v in prev_state:
prev_state[v].append(state_index)
else:
prev_state[v] = [state_index]
if 0 < j:
state_index = len(self.states)
self.states.append(prev_state)
self.state_for.append(this_for)
self.comb_state[this_for] = state_index
# Theoretically optimization can take space
# O(2**len(arrays) * len(arrays[0]))
# We will optimize until we are done or hit a more reasonable limit.
if optimize_limit is None:
# Normally
optimize_limit = len(self.states)**2
# First we find all of the choices at the root.
# This will be an array of arrays with format:
# [state, key, values]
todo = []
for k, v in self.states[0].iteritems():
if 1 < len(v):
todo.append([self.states[0], k, tuple(v)])
while len(todo) and len(self.states) < optimize_limit:
this_state, this_key, this_match = todo.pop(0)
if this_key == 'matched':
pass # We do not need to optimize this!
elif this_match in self.comb_state:
this_state[this_key] = self.comb_state[this_match]
else:
# Construct a new state that is all of these.
new_state = {}
for state_ind in this_match:
for k, v in self.states[state_ind].iteritems():
if k in new_state:
new_state[k] = new_state[k] + v
else:
new_state[k] = v
i = len(self.states)
self.states.append(new_state)
self.comb_state[this_match] = i
self.state_for.append(this_match)
this_state[this_key] = [i]
for k, v in new_state.iteritems():
if 1 < len(v):
todo.append([new_state, k, tuple(v)])
#pp = pprint.PrettyPrinter()
#pp.pprint(self.states)
#pp.pprint(self.comb_state)
#pp.pprint(self.state_for)
def match (self, list1, ind=0, state=0):
this_state = self.states[state]
if 'matched' in this_state:
return this_state['matched']
elif list1[ind] in this_state:
answer = []
for next_state in this_state[list1[ind]]:
answer = answer + self.match(list1, ind+1, next_state)
return answer;
else:
return []
foo = Matcher([[1, 2, 3], [2, 3, 4]])
print(foo.match([2, 2, 3]))
Please note that I deliberately set up a situation where there are 2 matches. It reports both of them. :-)
I came up with a further approach derived off Matt Timmermans's answer: building a simple decision tree that might have certain some arrays in multiple branches. It works even if the error in the array I'm searching is larger than 1.
The idea is the following: given the set of arrays As...
Pick an index and a pivot.
I fixed the pivot to a constant value that works well with my data, and tried all indices to find the best one. Trying multiple pivots might work better, but I didn't need to.
Partition As into two possibly-intersecting subsets, one for the arrays (whose index-th element is) smaller than the pivot, one for the larger arrays. Arrays very close to the pivot are added to both sets:
function partition( As, pivot, index ):
return {
As.filter( A => A[index] <= pivot + 1 ),
As.filter( A => A[index] >= pivot - 1 ),
}
Apply both previous steps to each subset recursively, stopping when a subset only contains a single element.
Here an example of a possible tree generated with this algorithm (note that A2 appears both on the left and right child of the root node):
{A1, A2, A3, A4}
pivot:15
index:73
/ \
/ \
{A1, A2} {A2, A3, A4}
pivot:7 pivot:33
index:54 index:0
/ \ / \
/ \ / \
A1 A2 {A2, A3} A4
pivot:5
index:48
/ \
/ \
A2 A3
The search function then uses this as a normal decision tree: it starts from the root node and recurses either to the left or the right child depending on whether its value at index currentNode.index is greater or less than currentNode.pivot. It proceeds recursively until it reaches a leaf.
Once the decision tree is built, the time complexity is in the worst case O(n), but in practice it's probably closer to O(log(n)) if we choose good indices and pivots (and if the dataset is diverse enough) and find a fairly balanced tree.
The space complexity can be really bad in the worst case (O(2^n)), but it's closer to O(n) with balanced trees.
Recently I needed to do weighted random selection of elements from a list, both with and without replacement. While there are well known and good algorithms for unweighted selection, and some for weighted selection without replacement (such as modifications of the resevoir algorithm), I couldn't find any good algorithms for weighted selection with replacement. I also wanted to avoid the resevoir method, as I was selecting a significant fraction of the list, which is small enough to hold in memory.
Does anyone have any suggestions on the best approach in this situation? I have my own solutions, but I'm hoping to find something more efficient, simpler, or both.
One of the fastest ways to make many with replacement samples from an unchanging list is the alias method. The core intuition is that we can create a set of equal-sized bins for the weighted list that can be indexed very efficiently through bit operations, to avoid a binary search. It will turn out that, done correctly, we will need to only store two items from the original list per bin, and thus can represent the split with a single percentage.
Let's us take the example of five equally weighted choices, (a:1, b:1, c:1, d:1, e:1)
To create the alias lookup:
Normalize the weights such that they sum to 1.0. (a:0.2 b:0.2 c:0.2 d:0.2 e:0.2) This is the probability of choosing each weight.
Find the smallest power of 2 greater than or equal to the number of variables, and create this number of partitions, |p|. Each partition represents a probability mass of 1/|p|. In this case, we create 8 partitions, each able to contain 0.125.
Take the variable with the least remaining weight, and place as much of it's mass as possible in an empty partition. In this example, we see that a fills the first partition. (p1{a|null,1.0},p2,p3,p4,p5,p6,p7,p8) with (a:0.075, b:0.2 c:0.2 d:0.2 e:0.2)
If the partition is not filled, take the variable with the most weight, and fill the partition with that variable.
Repeat steps 3 and 4, until none of the weight from the original partition need be assigned to the list.
For example, if we run another iteration of 3 and 4, we see
(p1{a|null,1.0},p2{a|b,0.6},p3,p4,p5,p6,p7,p8) with (a:0, b:0.15 c:0.2 d:0.2 e:0.2) left to be assigned
At runtime:
Get a U(0,1) random number, say binary 0.001100000
bitshift it lg2(p), finding the index partition. Thus, we shift it by 3, yielding 001.1, or position 1, and thus partition 2.
If the partition is split, use the decimal portion of the shifted random number to decide the split. In this case, the value is 0.5, and 0.5 < 0.6, so return a.
Here is some code and another explanation, but unfortunately it doesn't use the bitshifting technique, nor have I actually verified it.
A simple approach that hasn't been mentioned here is one proposed in Efraimidis and Spirakis. In python you could select m items from n >= m weighted items with strictly positive weights stored in weights, returning the selected indices, with:
import heapq
import math
import random
def WeightedSelectionWithoutReplacement(weights, m):
elt = [(math.log(random.random()) / weights[i], i) for i in range(len(weights))]
return [x[1] for x in heapq.nlargest(m, elt)]
This is very similar in structure to the first approach proposed by Nick Johnson. Unfortunately, that approach is biased in selecting the elements (see the comments on the method). Efraimidis and Spirakis proved that their approach is equivalent to random sampling without replacement in the linked paper.
Here's what I came up with for weighted selection without replacement:
def WeightedSelectionWithoutReplacement(l, n):
"""Selects without replacement n random elements from a list of (weight, item) tuples."""
l = sorted((random.random() * x[0], x[1]) for x in l)
return l[-n:]
This is O(m log m) on the number of items in the list to be selected from. I'm fairly certain this will weight items correctly, though I haven't verified it in any formal sense.
Here's what I came up with for weighted selection with replacement:
def WeightedSelectionWithReplacement(l, n):
"""Selects with replacement n random elements from a list of (weight, item) tuples."""
cuml = []
total_weight = 0.0
for weight, item in l:
total_weight += weight
cuml.append((total_weight, item))
return [cuml[bisect.bisect(cuml, random.random()*total_weight)] for x in range(n)]
This is O(m + n log m), where m is the number of items in the input list, and n is the number of items to be selected.
I'd recommend you start by looking at section 3.4.2 of Donald Knuth's Seminumerical Algorithms.
If your arrays are large, there are more efficient algorithms in chapter 3 of Principles of Random Variate Generation by John Dagpunar. If your arrays are not terribly large or you're not concerned with squeezing out as much efficiency as possible, the simpler algorithms in Knuth are probably fine.
It is possible to do Weighted Random Selection with replacement in O(1) time, after first creating an additional O(N)-sized data structure in O(N) time. The algorithm is based on the Alias Method developed by Walker and Vose, which is well described here.
The essential idea is that each bin in a histogram would be chosen with probability 1/N by a uniform RNG. So we will walk through it, and for any underpopulated bin which would would receive excess hits, assign the excess to an overpopulated bin. For each bin, we store the percentage of hits which belong to it, and the partner bin for the excess. This version tracks small and large bins in place, removing the need for an additional stack. It uses the index of the partner (stored in bucket[1]) as an indicator that they have already been processed.
Here is a minimal python implementation, based on the C implementation here
def prep(weights):
data_sz = len(weights)
factor = data_sz/float(sum(weights))
data = [[w*factor, i] for i,w in enumerate(weights)]
big=0
while big<data_sz and data[big][0]<=1.0: big+=1
for small,bucket in enumerate(data):
if bucket[1] is not small: continue
excess = 1.0 - bucket[0]
while excess > 0:
if big==data_sz: break
bucket[1] = big
bucket = data[big]
bucket[0] -= excess
excess = 1.0 - bucket[0]
if (excess >= 0):
big+=1
while big<data_sz and data[big][0]<=1: big+=1
return data
def sample(data):
r=random.random()*len(data)
idx = int(r)
return data[idx][1] if r-idx > data[idx][0] else idx
Example usage:
TRIALS=1000
weights = [20,1.5,9.8,10,15,10,15.5,10,8,.2];
samples = [0]*len(weights)
data = prep(weights)
for _ in range(int(sum(weights)*TRIALS)):
samples[sample(data)]+=1
result = [float(s)/TRIALS for s in samples]
err = [a-b for a,b in zip(result,weights)]
print(result)
print([round(e,5) for e in err])
print(sum([e*e for e in err]))
The following is a description of random weighted selection of an element of a
set (or multiset, if repeats are allowed), both with and without replacement in O(n) space
and O(log n) time.
It consists of implementing a binary search tree, sorted by the elements to be
selected, where each node of the tree contains:
the element itself (element)
the un-normalized weight of the element (elementweight), and
the sum of all the un-normalized weights of the left-child node and all of
its children (leftbranchweight).
the sum of all the un-normalized weights of the right-child node and all of
its chilren (rightbranchweight).
Then we randomly select an element from the BST by descending down the tree. A
rough description of the algorithm follows. The algorithm is given a node of
the tree. Then the values of leftbranchweight, rightbranchweight,
and elementweight of node is summed, and the weights are divided by this
sum, resulting in the values leftbranchprobability,
rightbranchprobability, and elementprobability, respectively. Then a
random number between 0 and 1 (randomnumber) is obtained.
if the number is less than elementprobability,
remove the element from the BST as normal, updating leftbranchweight
and rightbranchweight of all the necessary nodes, and return the
element.
else if the number is less than (elementprobability + leftbranchweight)
recurse on leftchild (run the algorithm using leftchild as node)
else
recurse on rightchild
When we finally find, using these weights, which element is to be returned, we either simply return it (with replacement) or we remove it and update relevant weights in the tree (without replacement).
DISCLAIMER: The algorithm is rough, and a treatise on the proper implementation
of a BST is not attempted here; rather, it is hoped that this answer will help
those who really need fast weighted selection without replacement (like I do).
This is an old question for which numpy now offers an easy solution so I thought I would mention it. Current version of numpy is version 1.2 and numpy.random.choice allows the sampling to be done with or without replacement and with given weights.
Suppose you want to sample 3 elements without replacement from the list ['white','blue','black','yellow','green'] with a prob. distribution [0.1, 0.2, 0.4, 0.1, 0.2]. Using numpy.random module it is as easy as this:
import numpy.random as rnd
sampling_size = 3
domain = ['white','blue','black','yellow','green']
probs = [.1, .2, .4, .1, .2]
sample = rnd.choice(domain, size=sampling_size, replace=False, p=probs)
# in short: rnd.choice(domain, sampling_size, False, probs)
print(sample)
# Possible output: ['white' 'black' 'blue']
Setting the replace flag to True, you have a sampling with replacement.
More info here:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html#numpy.random.choice
We faced a problem to randomly select K validators of N candidates once per epoch proportionally to their stakes. But this gives us the following problem:
Imagine probabilities of each candidate:
0.1
0.1
0.8
Probabilities of each candidate after 1'000'000 selections 2 of 3 without replacement became:
0.254315
0.256755
0.488930
You should know, those original probabilities are not achievable for 2 of 3 selection without replacement.
But we wish initial probabilities to be a profit distribution probabilities. Else it makes small candidate pools more profitable. So we realized that random selection with replacement would help us – to randomly select >K of N and store also weight of each validator for reward distribution:
std::vector<int> validators;
std::vector<int> weights(n);
int totalWeights = 0;
for (int j = 0; validators.size() < m; j++) {
int value = rand() % likehoodsSum;
for (int i = 0; i < n; i++) {
if (value < likehoods[i]) {
if (weights[i] == 0) {
validators.push_back(i);
}
weights[i]++;
totalWeights++;
break;
}
value -= likehoods[i];
}
}
It gives an almost original distribution of rewards on millions of samples:
0.101230
0.099113
0.799657
Consider a list [1,1,1,...,1,0,0,...,0] (an arbitrary list of zeros and ones). We want the whole possible permutations in this array, there'll be binomial(l,k) permutations (l stands for the length of the list and k for the number of ones in the list).
Right now, I have tested three different algorithms to generate the whole possible permutations, one that uses a recurrent function, one that calculates
the permutations via calculating the interval number [1,...,1,0,0,...,0]
to [0,0,...0,1,1,...,1] (since this can be seen as a binary number interval), and one that calculates the permutations using lexicographic order.
So far, the first two approaches fail in performance when the permutations are
approx. 32. The lexicographic technique works still pretty nice (only a few miliseconds to finish).
My question is, specifically for julia, which is the best way to calculate
permutations as I described earlier? I don't know too much in combinatorics, but I think a descent benchmark would be to generate all permutations from the total binomial(l,l/2)
As you have mentioned yourself in the comments, the case where l >> k is definitely desired. When this is the case, we can substantially improve performance by not handling vectors of length l until we really need them, and instead handle a list of indexes of the ones.
In the RAM-model, the following algorithm will let you iterate over all the combinations in space O(k^2), and time O(k^2 * binom(l,k))
Note however, that every time you generate a bit-vector from an index combination, you incur an overhead of O(l), in which you will also have the lower-bound (for all combinations) of Omega(l*binom(l,k)), and the memory usage grows to Omega(l+k^2).
The algorithm
"""
Produces all `k`-combinations of integers in `1:l` with prefix `current`, in a
lexicographical order.
# Arguments
- `current`: The current combination
- `l`: The parent set size
- `k`: The target combination size
"""
function combination_producer(l, k, current)
if k == length(current)
produce(current)
else
j = (length(current) > 0) ? (last(current)+1) : 1
for i=j:l
combination_producer(l, k, [current, i])
end
end
end
"""
Produces all combinations of size `k` from `1:l` in a lexicographical order
"""
function combination_producer(l,k)
combination_producer(l,k, [])
end
Example
You can then iterate over all the combinations as follows:
for c in #task(combination_producer(l, k))
# do something with c
end
Notice how this algorithm is resumable: You can stop the iteration whenever you want, and continue again:
iter = #task(combination_producer(5, 3))
for c in iter
println(c)
if c[1] == 2
break
end
end
println("took a short break")
for c in iter
println(c)
end
This produces the following output:
[1,2,3]
[1,2,4]
[1,2,5]
[1,3,4]
[1,3,5]
[1,4,5]
[2,3,4]
took a short break
[2,3,5]
[2,4,5]
[3,4,5]
If you want to get a bit-vector out of c then you can do e.g.
function combination_to_bitvector(l, c)
result = zeros(l)
result[c] = 1
result
end
where l is the desired length of the bit-vector.
How can I generate a random number that is in the range (1,n) but not in a certain list (i,j)?
Example: range is (1,500), list is [1,3,4,45,199,212,344].
Note: The list may not be sorted
Rejection Sampling
One method is rejection sampling:
Generate a number x in the range (1, 500)
Is x in your list of disallowed values? (Can use a hash-set for this check.)
If yes, return to step 1
If no, x is your random value, done
This will work fine if your set of allowed values is significantly larger than your set of disallowed values:if there are G possible good values and B possible bad values, then the expected number of times you'll have to sample x from the G + B values until you get a good value is (G + B) / G (the expectation of the associated geometric distribution). (You can sense check this. As G goes to infinity, the expectation goes to 1. As B goes to infinity, the expectation goes to infinity.)
Sampling a List
Another method is to make a list L of all of your allowed values, then sample L[rand(L.count)].
The technique I usually use when the list is length 1 is to generate a random
integer r in [1,n-1], and if r is greater or equal to that single illegal
value then increment r.
This can be generalised for a list of length k for small k but requires
sorting that list (you can't do your compare-and-increment in random order). If the list is moderately long, then after the sort you can start with a bsearch, and add the number of values skipped to r, and then recurse into the remainder of the list.
For a list of length k, containing no value greater or equal to n-k, you
can do a more direct substitution: generate random r in [1,n-k], and
then iterate through the list testing if r is equal to list[i]. If it is
then set r to n-k+i (this assumes list is zero-based) and quit.
That second approach fails if some of the list elements are in [n-k,n].
I could try to invest something clever at this point, but what I have so far
seems sufficient for uniform distributions with values of k much less than
n...
Create two lists -- one of illegal values below n-k, and the other the rest (this can be done in place).
Generate random r in [1,n-k]
Apply the direct substitution approach for the first list (if r is list[i] then set r to n-k+i and go to step 5).
If r was not altered in step 3 then we're finished.
Sort the list of larger values and use the compare-and-increment method.
Observations:
If all values are in the lower list, there will be no sort because there is nothing to sort.
If all values are in the upper list, there will be no sort because there is no occasion on which r is moved into the hazardous area.
As k approaches n, the maximum size of the upper (sorted) list grows.
For a given k, if more value appear in the upper list (the bigger the sort), the chance of getting a hit in the lower list shrinks, reducing the likelihood of needing to do the sort.
Refinement:
Obviously things get very sorty for large k, but in such cases the list has comparatively few holes into which r is allowed to settle. This could surely be exploited.
I might suggest something different if many random values with the same
list and limits were needed. I hope that the list of illegal values is not the
list of results of previous calls to this function, because if it is then you
wouldn't want any of this -- instead you would want a Fisher-Yates shuffle.
Rejection sampling would be the simplest if possible as described already. However, if you didn't want use that, you could convert the range and disallowed values to sets and find the difference. Then, you could choose a random value out of there.
Assuming you wanted the range to be in [1,n] but not in [i,j] and that you wanted them uniformly distributed.
In Python
total = range(1,n+1)
disallowed = range(i,j+1)
allowed = list( set(total) - set(disallowed) )
return allowed[random.randrange(len(allowed))]
(Note that this is not EXACTLY uniform since in all likeliness, max_rand%len(allowed) != 0 but this will in most practical applications be very close)
I assume that you know how to generate a random number in [1, n) and also your list is ordered like in the example above.
Let's say that you have a list with k elements. Make a map(O(logn)) structure, which will ensure speed if k goes higher. Put all elements from list in map, where element value will be the key and "good" value will be the value. Later on I'll explain about "good" value. So when we have the map then just find a random number in [1, n - k - p)(Later on I'll explain what is p) and if this number is in map then replace it with "good" value.
"GOOD" value -> Let's start from k-th element. It's good value is its own value + 1, because the very next element is "good" for us. Now let's look at (k-1)th element. We assume that its good value is again its own value + 1. If this value is equal to k-th element then the "good" value for (k-1)th element is k-th "good" value + 1. Also you will have to store the largest "good" value. If the largest value exceed n then p(from above) will be p = largest - n.
Of course I recommend you this only if k is big number otherwise #Timothy Shields' method is perfect.
I would like to randomly iterate through a range. Each value will be visited only once and all values will eventually be visited. For example:
class Array
def shuffle
ret = dup
j = length
i = 0
while j > 1
r = i + rand(j)
ret[i], ret[r] = ret[r], ret[i]
i += 1
j -= 1
end
ret
end
end
(0..9).to_a.shuffle.each{|x| f(x)}
where f(x) is some function that operates on each value. A Fisher-Yates shuffle is used to efficiently provide random ordering.
My problem is that shuffle needs to operate on an array, which is not cool because I am working with astronomically large numbers. Ruby will quickly consume a large amount of RAM trying to create a monstrous array. Imagine replacing (0..9) with (0..99**99). This is also why the following code will not work:
tried = {} # store previous attempts
bigint = 99**99
bigint.times {
x = rand(bigint)
redo if tried[x]
tried[x] = true
f(x) # some function
}
This code is very naive and quickly runs out of memory as tried obtains more entries.
What sort of algorithm can accomplish what I am trying to do?
[Edit1]: Why do I want to do this? I'm trying to exhaust the search space of a hash algorithm for a N-length input string looking for partial collisions. Each number I generate is equivalent to a unique input string, entropy and all. Basically, I'm "counting" using a custom alphabet.
[Edit2]: This means that f(x) in the above examples is a method that generates a hash and compares it to a constant, target hash for partial collisions. I do not need to store the value of x after I call f(x) so memory should remain constant over time.
[Edit3/4/5/6]: Further clarification/fixes.
[Solution]: The following code is based on #bta's solution. For the sake of conciseness, next_prime is not shown. It produces acceptable randomness and only visits each number once. See the actual post for more details.
N = size_of_range
Q = ( 2 * N / (1 + Math.sqrt(5)) ).to_i.next_prime
START = rand(N)
x = START
nil until f( x = (x + Q) % N ) == START # assuming f(x) returns x
I just remembered a similar problem from a class I took years ago; that is, iterating (relatively) randomly through a set (completely exhausting it) given extremely tight memory constraints. If I'm remembering this correctly, our solution algorithm was something like this:
Define the range to be from 0 to
some number N
Generate a random starting point x[0] inside N
Generate an iterator Q less than N
Generate successive points x[n] by adding Q to
the previous point and wrapping around if needed. That
is, x[n+1] = (x[n] + Q) % N
Repeat until you generate a new point equal to the starting point.
The trick is to find an iterator that will let you traverse the entire range without generating the same value twice. If I'm remembering correctly, any relatively prime N and Q will work (the closer the number to the bounds of the range the less 'random' the input). In that case, a prime number that is not a factor of N should work. You can also swap bytes/nibbles in the resulting number to change the pattern with which the generated points "jump around" in N.
This algorithm only requires the starting point (x[0]), the current point (x[n]), the iterator value (Q), and the range limit (N) to be stored.
Perhaps someone else remembers this algorithm and can verify if I'm remembering it correctly?
As #Turtle answered, you problem doesn't have a solution. #KandadaBoggu and #bta solution gives you random numbers is some ranges which are or are not random. You get clusters of numbers.
But I don't know why you care about double occurence of the same number. If (0..99**99) is your range, then if you could generate 10^10 random numbers per second (if you have a 3 GHz processor and about 4 cores on which you generate one random number per CPU cycle - which is imposible, and ruby will even slow it down a lot), then it would take about 10^180 years to exhaust all the numbers. You have also probability about 10^-180 that two identical numbers will be generated during a whole year. Our universe has probably about 10^9 years, so if your computer could start calculation when the time began, then you would have probability about 10^-170 that two identical numbers were generated. In the other words - practicaly it is imposible and you don't have to care about it.
Even if you would use Jaguar (top 1 from www.top500.org supercomputers) with only this one task, you still need 10^174 years to get all numbers.
If you don't belive me, try
tried = {} # store previous attempts
bigint = 99**99
bigint.times {
x = rand(bigint)
puts "Oh, no!" if tried[x]
tried[x] = true
}
I'll buy you a beer if you will even once see "Oh, no!" on your screen during your life time :)
I could be wrong, but I don't think this is doable without storing some state. At the very least, you're going to need some state.
Even if you only use one bit per value (has this value been tried yes or no) then you will need X/8 bytes of memory to store the result (where X is the largest number). Assuming that you have 2GB of free memory, this would leave you with more than 16 million numbers.
Break the range in to manageable batches as shown below:
def range_walker range, batch_size = 100
size = (range.end - range.begin) + 1
n = size/batch_size
n.times do |i|
x = i * batch_size + range.begin
y = x + batch_size
(x...y).sort_by{rand}.each{|z| p z}
end
d = (range.end - size%batch_size + 1)
(d..range.end).sort_by{rand}.each{|z| p z }
end
You can further randomize solution by randomly choosing the batch for processing.
PS: This is a good problem for map-reduce. Each batch can be worked by independent nodes.
Reference:
Map-reduce in Ruby
you can randomly iterate an array with shuffle method
a = [1,2,3,4,5,6,7,8,9]
a.shuffle!
=> [5, 2, 8, 7, 3, 1, 6, 4, 9]
You want what's called a "full cycle iterator"...
Here is psudocode for the simplest version which is perfect for most uses...
function fullCycleStep(sample_size, last_value, random_seed = 31337, prime_number = 32452843) {
if last_value = null then last_value = random_seed % sample_size
return (last_value + prime_number) % sample_size
}
If you call this like so:
sample = 10
For i = 1 to sample
last_value = fullCycleStep(sample, last_value)
print last_value
next
It would generate random numbers, looping through all 10, never repeating If you change random_seed, which can be anything, or prime_number, which must be greater than, and not be evenly divisible by sample_size, you will get a new random order, but you will still never get a duplicate.
Database systems and other large-scale systems do this by writing the intermediate results of recursive sorts to a temp database file. That way, they can sort massive numbers of records while only keeping limited numbers of records in memory at any one time. This tends to be complicated in practice.
How "random" does your order have to be? If you don't need a specific input distribution, you could try a recursive scheme like this to minimize memory usage:
def gen_random_indices
# Assume your input range is (0..(10**3))
(0..3).sort_by{rand}.each do |a|
(0..3).sort_by{rand}.each do |b|
(0..3).sort_by{rand}.each do |c|
yield "#{a}#{b}#{c}".to_i
end
end
end
end
gen_random_indices do |idx|
run_test_with_index(idx)
end
Essentially, you are constructing the index by randomly generating one digit at a time. In the worst-case scenario, this will require enough memory to store 10 * (number of digits). You will encounter every number in the range (0..(10**3)) exactly once, but the order is only pseudo-random. That is, if the first loop sets a=1, then you will encounter all three-digit numbers of the form 1xx before you see the hundreds digit change.
The other downside is the need to manually construct the function to a specified depth. In your (0..(99**99)) case, this would likely be a problem (although I suppose you could write a script to generate the code for you). I'm sure there's probably a way to re-write this in a state-ful, recursive manner, but I can't think of it off the top of my head (ideas, anyone?).
[Edit]: Taking into account #klew and #Turtle's answers, the best I can hope for is batches of random (or close to random) numbers.
This is a recursive implementation of something similar to KandadaBoggu's solution. Basically, the search space (as a range) is partitioned into an array containing N equal-sized ranges. Each range is fed back in a random order as a new search space. This continues until the size of the range hits a lower bound. At this point the range is small enough to be converted into an array, shuffled, and checked.
Even though it is recursive, I haven't blown the stack yet. Instead, it errors out when attempting to partition a search space larger than about 10^19 keys. I has to do with the numbers being too large to convert to a long. It can probably be fixed:
# partition a range into an array of N equal-sized ranges
def partition(range, n)
ranges = []
first = range.first
last = range.last
length = last - first + 1
step = length / n # integer division
((first + step - 1)..last).step(step) { |i|
ranges << (first..i)
first = i + 1
}
# append any extra onto the last element
ranges[-1] = (ranges[-1].first)..last if last > step * ranges.length
ranges
end
I hope the code comments help shed some light on my original question.
pastebin: full source
Note: PW_LEN under # options can be changed to a lower number in order to get quicker results.
For a prohibitively large space, like
space = -10..1000000000000000000000
You can add this method to Range.
class Range
M127 = 170_141_183_460_469_231_731_687_303_715_884_105_727
def each_random(seed = 0)
return to_enum(__method__) { size } unless block_given?
unless first.kind_of? Integer
raise TypeError, "can't randomly iterate from #{first.class}"
end
sample_size = self.end - first + 1
sample_size -= 1 if exclude_end?
j = coprime sample_size
v = seed % sample_size
each do
v = (v + j) % sample_size
yield first + v
end
end
protected
def gcd(a,b)
b == 0 ? a : gcd(b, a % b)
end
def coprime(a, z = M127)
gcd(a, z) == 1 ? z : coprime(a, z + 1)
end
end
You could then
space.each_random { |i| puts i }
729815750697818944176
459631501395637888351
189447252093456832526
919263002791275776712
649078753489094720887
378894504186913665062
108710254884732609237
838526005582551553423
568341756280370497598
298157506978189441773
27973257676008385948
757789008373827330134
487604759071646274309
217420509769465218484
947236260467284162670
677052011165103106845
406867761862922051020
136683512560740995195
866499263258559939381
596315013956378883556
326130764654197827731
55946515352016771906
785762266049835716092
515578016747654660267
...
With a good amount of randomness so long as your space is a few orders smaller than M127.
Credit to #nick-steele and #bta for the approach.
This isn't really a Ruby-specific answer but I hope it's permitted. Andrew Kensler gives a C++ "permute()" function that does exactly this in his "Correlated Multi-Jittered Sampling" report.
As I understand it, the exact function he provides really only works if your "array" is up to size 2^27, but the general idea could be used for arrays of any size.
I'll do my best to sort of explain it. The first part is you need a hash that is reversible "for any power-of-two sized domain". Consider x = i + 1. No matter what x is, even if your integer overflows, you can determine what i was. More specifically, you can always determine the bottom n-bits of i from the bottom n-bits of x. Addition is a reversible hash operation, as is multiplication by an odd number, as is doing a bitwise xor by a constant. If you know a specific power-of-two domain, you can scramble bits in that domain. E.g. x ^= (x & 0xFF) >> 5) is valid for the 16-bit domain. You can specify that domain with a mask, e.g. mask = 0xFF, and your hash function becomes x = hash(i, mask). Of course you can add a "seed" value into that hash function to get different randomizations. Kensler lays out more valid operations in the paper.
So you have a reversible function x = hash(i, mask, seed). The problem is that if you hash your index, you might end up with a value that is larger than your array size, i.e. your "domain". You can't just modulo this or you'll get collisions.
The reversible hash is the key to using a technique called "cycle walking", introduced in "Ciphers with Arbitrary Finite Domains". Because the hash is reversible (i.e. 1-to-1), you can just repeatedly apply the same hash until your hashed value is smaller than your array! Because you're applying the same hash, and the mapping is one-to-one, whatever value you end up on will map back to exactly one index, so you don't have collisions. So your function could look something like this for 32-bit integers (pseudocode):
fun permute(i, length, seed) {
i = hash(i, 0xFFFF, seed)
while(i >= length): i = hash(i, 0xFFFF, seed)
return i
}
It could take a lot of hashes to get to your domain, so Kensler does a simple trick: he keeps the hash within the domain of the next power of two, which makes it require very few iterations (~2 on average), by masking out the unnecessary bits. The final algorithm looks like this:
fun next_pow_2(length) {
# This implementation is for clarity.
# See Kensler's paper for one way to do it fast.
p = 1
while (p < length): p *= 2
return p
}
permute(i, length, seed) {
mask = next_pow_2(length)-1
i = hash(i, mask, seed) & mask
while(i >= length): i = hash(i, mask, seed) & mask
return i
}
And that's it! Obviously the important thing here is choosing a good hash function, which Kensler provides in the paper but I wanted to break down the explanation. If you want to have different random permutations each time, you can add a "seed" value to the permute function which then gets passed to the hash function.