Two values from range having maximum xor - algorithm

We are given two constraint L and R(L<=R) and we have to find two values i and j(l<=i<=j<=R) such that Xor of them is maximum.
I already tried O(n^2) so want anything better.

Here is the solution that you can use (This gives you answer in log(R))
Let me explain it with an example:
Let L=34, R=45. Represent them as bit-arrays:
L = 100010 R = 101101
You start from the left till you find the first mismatch of the form:
L[i] = 0 and R[i] = 1
You will always find this because L < R. (If L==R, this is trivial case and answer is 0)
From here on, change every bit of L to 1 and every bit of R to 0.
The numbers you get will be your i and j and their XOR will be the max you can get.
eg. 34 and 45
100010 and 101101
1st mismatch at index 2 [0-based]
From there, change all L[i] to 1 and all R[i] to 0
=> i = 100111 and j = 101000
=> i = 39 and j = 40
and i^j = 15

If this is a one time request, with no preprocessing:
Given a range [L, R] you just need to be able to find a number that has 1 at a particular bit position among the numbers in this range. This can easily be done with bit operations.
suppose you have L = 0, R = 7, in binary your numbers are:
000, 001, 010, ..., 111
the current number is 000, to maximize xor you need to find the number which has 1 at the most significant bit position. The first such number is 4 = 100. Now you are dealing with range 100, 101, ..., 111 and bit at the second highest position. The bit at the second highest position is 0, so to maximize xor you again need a number with a 1 on that position. The first such number is 6 = 110. You can apply the very same pattern again. Now that you are done with 000 you can do the same for 001 and so on.
The number of iterations for one number is the maximum number of bits you have in numbers from L to R. Hence the total number of operations is O((R-L+1)*log(R-L+1))

Related

AND of all natural numbers lying between A and B both inclusive

We are required to compute the bit wise AND amongst all natural numbers lying between A and B, both inclusive.I came across this problem on a website and here is the approach they used but i couldn't understand the method.Can anyone explain this more clearly with an example ?
In order to solve this problem, we just need to focus on the occurrences of each power 2, which turn out to be cyclic. Now for each 2^i(the length of the cycle will be 2^(i+1) having 2^i zeros followed by same number of ones) we just need to compute if 1 remains constant in the given interval, which is done by simple arithmetic. If so, that power of 2 will be present in the answer, otherwise it won't.
Let's count (unsigned) with 3 bits to visualize some numbers first:
000 = 0
001 = 1
010 = 2
011 = 3
100 = 4
101 = 5
110 = 6
111 = 7
If you look at the columns, you can see that the lowest bit is alternating with a cycle of 1, the next with a cycle of 2, then 4, and the nth lowest bit is alternating with a cycle of 2^(n-1).
As soon as a bit was 0 once it is always 0 (because 0 and whatever is 0).
You could also say the nth bit is only 1 if the nth bit of A and B is 1 and d < 2^(n-1). In other words a bit will only be 1 if it is 1 at the beginning and the end and didn't had time to change to 0 in between because its cycle is too large.

Algorithm in hardware to find out if number is divisible by five

I am trying to think of an algorithm to implement this for a given n bit binary number. I tried out many examples, but am unable to find out any pattern. So how shall I proceed?
How about this:
Convert the number to base 4 (this is trivial by simply combining pairs of bits). 5 in base 4 is 11. The values base 4 that are divisible by 11 are somewhat familiar: 11, 22, 33, 110, 121, 132, 203, ...
The rule for divisibility by 11 is that you add all the odd digits and all the even digits and subtract one from the other. If the result is divisible by 11 (which remember is 5), then it's divisible by 11 (which remember is 5).
For example:
123456d = 1 1110 0010 0100 0000b = 132021000_4
The even digits are 1 2 2 0 0 : sum = 5d
The odd digits are 3 0 1 0 : sum = 4d
Difference is 1, which is not divisble by 5
Or another one:
123455d = 1 1110 0010 0011 1111b = 132020333_4
The even digits are 1 2 2 3 3 : sum = 11d
The odd digits are 3 0 0 3 : sum = 6d
Difference is 5, which is a 5 or a 0
This should have a fairly efficient HW implementation because it's mostly bit-slicing, followed by N/2 adders, where N is the number of bits in the number you're interested in.
Note that after adding the digits and subtracting, the maximum value is 3/4 * N, so if you have 16-bit numbers max, you can get at most 12 as a result, so you only need to check for 0, ±5 and ±10 explicitly. If you're using 32-bit numbers then you can get at most 24 as a result, so you need to also check if the result is ±15 or ±20.
Make a Deterministic Finite Automaton (DFA) to implement the divisibility check and implement the DFA in hardware.
Creating a DFA for divisibility by 5 is easy. You just need to notice the remainders and check what 2r (mod 5) and 2r + 1(mod 5) map to. There are many websites that discuss this. For example this one.
There are well-known examples to convert DFA to a hardware representation as well.
Well , I just figured out ...
number mod 5 = a0 * 2^0 mod 5 + a1 * 2^1 mod 5 +a2* 2^2 mod 5 + a3 * 2^3 mod 5 + a4 * 2^4 mod 5 + ....
= a0 (1) + a1(2) +a2 (-1) +a3 (-2) +a4 (1) repeats ...
Hence difference of odd digits + 2 times difference of even digits = divisible by 5
for example ... consider 110010
odd digits differnce = 0-0+1 = 1 or 01
even digits difference = 1-0+1 = 2 or 10
difference of odd digits + 2 times difference of even digits = 01 + 2*(10)=01 + 100 = 101 is divisible by 5 .
The contribution of each bit toward being divisible by five is a four bit pattern 3421.
You could shift through any binary number 4 bits at a time adding the corresponding value for positive bits.
Example:
100011
take 0011
apply the pattern 0021
sum 3
next four bits 0010
apply the pattern 0020
sum = 5
We can design a Deterministic Finite Automaton (DFA) for the same. The DFA, then can be implemented in Hardware. This is similar to this answer.
We will simulate a Deterministic Finite Automaton (DFA) that accepts Binary Representation of Integers which are divisible by 5
Now, by accept, we mean that when we are done with scanning string, we should be in one of the multiple possible Final States.
Approach to Design DFA : Essentially, we need to divide the Binary Representation of Integer by 5, and track the remainder. If after consuming/scanning [From Left to Right] the entire string, remainder is Zero, then we should end up in Final State, and if remainder isn't zero we should be in Non-Final States.
Now, DFA is defined by Quintuple/5-Tuple (Q,q₀,F,Σ,δ). We will obtain these five components step-by-step.
Q : Finite Set of States
We need to track remainder. On dividing any integer by 5, we can get remainder as 0,1, 2, 3 or 4. Hence, we will have Five States Z, O, T, Th and F for each possible remainder.
Q={Z, O, T, Th, F}
If after scanning certain part of Binary String, we are in state Z, this means that integer defined from Left to this part will give remainder Zero when divided by 5. Similarly, O for remainder One, and so on.
Now, we can write these three states by Euclidean Division Algorithm as
Z : 5m
O : 5m+1
T : 5m+2
Th : 5m+3
F : 5m+4
where m is Integer.
q₀ : an initial/start state from set Q
Now, start state can be thought in terms of empty string (ɛ). An ɛ directly gets into q₀.
What remainder does ɛ gives when divided by 5?
We can append as many 0s in left hand side of a Binary Number. In the similar fashion, we can append ɛ in left hand side of a Binary String. Thus, ɛ in left can be thought of as 0. And 0 when divided by 5 gives remainder 0. Hence, ɛ should end in State Z. But ɛ ends up in q₀.
Thus, q₀=Z
F : a set of accept states
Now we want all strings which are divisible by 5, or which gives remainder 0 when divided by 5, or which after complete scanning should end up in state Z, and gets accepted.
Hence,
F={Z}
Σ : Alphabet (a finite set of input symbols)
Since we are scanning/reading a Binary String. Hence,
Σ={0,1}
δ : Transition Function (δ : Q × Σ → Q)
Now this δ tells us that if we are in state x (in Q) and next input to be scanned is y (in Σ), then at which state z (in Q) should we go.
If the string upto this point gives remainder 3/Th when divided by 5, and if we append 1 to string, then what remainder will resultant string give.
Now, this can be analyzed by observing how magnitude of a binary string changes on appending 0 and 1.
a.
In Decimal (Base-10), if we add/append 0, then magnitude gets multiplied by 10 . 53, on appending 0 it becomes 530
Also, if we append 8 to decimal, then Magnitude gets multiplied by 10, and then we add 8 to multiplied magnitude.
b.
In Binary (Base-2), if we add/append 0, then magnitude gets multiplied by 2 (The Positional Weight of each Bit get multiplied by 2)
Example : (1010)2 [which is (10)10], on appending 0 it becomes (10100)2 [which is (20)10]
Similarly, In Binary, if we append 1, then Magnitude gets multiplied by 2, and then we add 1.
Example : (10)2 [which is (2)10], on appending 1 it becomes (101)2 [which is (5)10]
Thus, we can say that for Binary String x,
x0=2|x|
x1=2|x|+1
We will use these relation to analyze Five States
Any string in Z can be written as 5m
- On 0, it becomes 2(5m), which is 5(2m), nothing but state Z.
- On 1, it becomes 2(5m)+1, which is 5(2m)+1, that is O. [This can be read as if a Binary String is presently divisible by 5, and we append 1, then resultant string will give remainder as 1]
Any string in O can be written as 5m+1
- On 0, it becomes 2(5m+1) = 10m+2, which is 5(2m)+2, state T.
- On 1, it becomes 2(5m+1)+1 = 10m+3, which is 5(2m)+3, that is state Th.
Any string in T can be written as 5m+2
- On 0, it becomes 2(5m+2) = 10m+4, which is 5(2m)+4, state F.
- On 1, it becomes 2(5m+2)+1 = 10m+5, which is 5(2m+1), state Z. [If m is integer, so is (2m+1)]
Any string in Th can be written as 5m+3
- On 0, it becomes 2(5m+3) = 10m+6, which is 5(2m+1)+1, state V.
- On 1, it becomes 2(5m+3)+1 = 10m+7, which is 5(2m+1)+2, that is state T.
Any string in F can be written as 5m+4
- On 0, it becomes 2(5m+4) = 10m+8, which is 5(2m+1)+3, state Th.
- On 1, it becomes 2(5m+4)+1 = 10m+9, which is 5(2m+1)+4, that is state F.
Hence, the final DFA combining Everything (creating using Tool)
We can even write code [in High Level Language] for the same. But it would go beyond main aim of this question. If readers wish to see the same, they can check here.
As any assignment this would have been an answer for is bound to be way overdue a year later:
in the binary representation of a natural divisible by five the parities of bits 4n and 4n+2 equal, as well as those for bits 4n+1 and 4n+3.
(This is entirely equivalent to the answers of JoshG79, notsogeek, or james: 4≡-1(mod 5), 3≡-2(mod 5) (with reduced hand-waving about recursion in argumentation, and no dispensable handling of carries in circuitry))

maximum value of xor operation

I came up with this question.
There is an encryption algorithm which uses bitwise XOR operations extensively. This encryption algorithm uses a sequence of non-negative integers x1, x2, ... xn as key. To implement this algorithm efficiently, Xorq needs to find maximum value for (a xor xj) for given integers a, p and q such that p <= j <= q. Help Xorq to implement this function.
Input
First line of input contains a single integer T (1<=T<=6). T test cases follow.
First line of each test case contains two integers N and Q separated by a single space (1 <= N <= 100,000; 1 <= Q <= 50,000). Next line contains N integers x1, x2, ... xn separated by a single space (0 <= xj < 215). Each of next Q lines describe a query which consists of three integers ai, pi and qi (0 <= ai < 215, 1<= pi <= qi <= N).
Output
For each query, print the maximum value for (ai xor xj) such that pi <= j <= qi in a single line.
Sample Input
1
15 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 6 10
1023 7 7
33 5 8
182 5 10
181 1 13
5 10 15
99 8 9
33 10 14
Sample Output
13
1016
41
191
191
15
107
47
Explanation
First Query (10 6 10): x6 xor 10 = 12,
x7 xor 10 = 13, x8 xor 10 = 2, x9 xor 10 = 3, x10 xor 10 = 0,
therefore answer for this query is 13.
Second Query (1023 7 7): x7 xor 1023 = 1016,
therefore answer for this query is 1016.
Third Query (33 5 8): x5 xor 33 = 36, x6 xor 33 = 39,
x7 xor 33 = 38, x8 xor 33 = 41, therefore answer for this query is 41.
Fourth Query (182 5 10): x5 xor 182 = 179,
x6 xor 182 = 176, x7 xor 182 = 177, x8 xor 182 = 190,
x9 xor 182 = 191, x10 xor 182 = 188,
therefore answer for this query is 191.
I tried this by first making the numbers length(in binary)
in the given range equal and then comparing 'a' bit by
bit with the particular xj values.But it is time exceeding.
Maximum time limit in java is 5sec.
I haven't gone through your code in detail, but you seem to have loops over the range of r = p - 1; r < q - 1; r++, and it would be nice not to have to do this.
Given ai, we want to find a value of xi in the given range with as many of its top bits the inverse of ai as possible. Everything is between 0 and 2^15, so there aren't many bits to worry about. For n = 1 to 15 you could divide the xi up according to its n highest bits, so dividing it into 2, 4, 8, 16.. 32768 portions. For each portion keep a list in sorted order of the positions where each possible value is found, so for the top bit you will have two lists, one giving the positions at which the bit pattern is 0.............. and one giving the position at which the bit pattern is 1............ For each triple, you can use binary chop on a particular portion to find if there are any positions within your range at which the top n bits have the bit pattern you are looking for. If they do, fine. If not you will have to accept that one of the xor positions is 0 and slightly modify the pattern you look for with one more top bit set.
The setup cost is 15 linear passes over the xi, which is probably less time than it takes you to read it in. For each line you could do 15 binary chops to see which values of xi match in the top n bits, and modify the pattern of top bits you look for if you can't match a particular bit.
I think your program would be clearer if you separated the I/O from the problem code by making the problem code a separate subroutine. This would also make it easier to compare one version of the problem code with another, to see which is faster and if they both get the same answer.
The biggest inefficiency that I can spot in the original algorithm is that N can be up to 100,000 but a and x can only go up to 214. So I would write pseudocode something like this:
bool set[256] = { false };
for (j = p; j <= q; j++) set[x[j]] = true;
for (k = 255; !set[a ^ j]; k--);
return k;
This reduces the number of xor operations to 256 in the worst case.

Google Interview: Arrangement of Blocks

You are given N blocks of height 1…N. In how many ways can you arrange these blocks in a row such that when viewed from left you see only L blocks (rest are hidden by taller blocks) and when seen from right you see only R blocks? Example given N=3, L=2, R=1 there is only one arrangement {2, 1, 3} while for N=3, L=2, R=2 there are two ways {1, 3, 2} and {2, 3, 1}.
How should we solve this problem by programming? Any efficient ways?
This is a counting problem, not a construction problem, so we can approach it using recursion. Since the problem has two natural parts, looking from the left and looking from the right, break it up and solve for just one part first.
Let b(N, L, R) be the number of solutions, and let f(N, L) be the number of arrangements of N blocks so that L are visible from the left. First think about f because it's easier.
APPROACH 1
Let's get the initial conditions and then go for recursion. If all are to be visible, then they must be ordered increasingly, so
f(N, N) = 1
If there are suppose to be more visible blocks than available blocks, then nothing we can do, so
f(N, M) = 0 if N < M
If only one block should be visible, then put the largest first and then the others can follow in any order, so
f(N,1) = (N-1)!
Finally, for the recursion, think about the position of the tallest block, say N is in the kth spot from the left. Then choose the blocks to come before it in (N-1 choose k-1) ways, arrange those blocks so that exactly L-1 are visible from the left, and order the N-k blocks behind N it in any you like, giving:
f(N, L) = sum_{1<=k<=N} (N-1 choose k-1) * f(k-1, L-1) * (N-k)!
In fact, since f(x-1,L-1) = 0 for x<L, we may as well start k at L instead of 1:
f(N, L) = sum_{L<=k<=N} (N-1 choose k-1) * f(k-1, L-1) * (N-k)!
Right, so now that the easier bit is understood, let's use f to solve for the harder bit b. Again, use recursion based on the position of the tallest block, again say N is in position k from the left. As before, choose the blocks before it in N-1 choose k-1 ways, but now think about each side of that block separately. For the k-1 blocks left of N, make sure that exactly L-1 of them are visible. For the N-k blocks right of N, make sure that R-1 are visible and then reverse the order you would get from f. Therefore the answer is:
b(N,L,R) = sum_{1<=k<=N} (N-1 choose k-1) * f(k-1, L-1) * f(N-k, R-1)
where f is completely worked out above. Again, many terms will be zero, so we only want to take k such that k-1 >= L-1 and N-k >= R-1 to get
b(N,L,R) = sum_{L <= k <= N-R+1} (N-1 choose k-1) * f(k-1, L-1) * f(N-k, R-1)
APPROACH 2
I thought about this problem again and found a somewhat nicer approach that avoids the summation.
If you work the problem the opposite way, that is think of adding the smallest block instead of the largest block, then the recurrence for f becomes much simpler. In this case, with the same initial conditions, the recurrence is
f(N,L) = f(N-1,L-1) + (N-1) * f(N-1,L)
where the first term, f(N-1,L-1), comes from placing the smallest block in the leftmost position, thereby adding one more visible block (hence L decreases to L-1), and the second term, (N-1) * f(N-1,L), accounts for putting the smallest block in any of the N-1 non-front positions, in which case it is not visible (hence L stays fixed).
This recursion has the advantage of always decreasing N, though it makes it more difficult to see some formulas, for example f(N,N-1) = (N choose 2). This formula is fairly easy to show from the previous formula, though I'm not certain how to derive it nicely from this simpler recurrence.
Now, to get back to the original problem and solve for b, we can also take a different approach. Instead of the summation before, think of the visible blocks as coming in packets, so that if a block is visible from the left, then its packet consists of all blocks right of it and in front of the next block visible from the left, and similarly if a block is visible from the right then its packet contains all blocks left of it until the next block visible from the right. Do this for all but the tallest block. This makes for L+R packets. Given the packets, you can move one from the left side to the right side simply by reversing the order of the blocks. Therefore the general case b(N,L,R) actually reduces to solving the case b(N,L,1) = f(N,L) and then choosing which of the packets to put on the left and which on the right. Therefore we have
b(N,L,R) = (L+R choose L) * f(N,L+R)
Again, this reformulation has some advantages over the previous version. Putting these latter two formulas together, it's much easier to see the complexity of the overall problem. However, I still prefer the first approach for constructing solutions, though perhaps others will disagree. All in all it just goes to show there's more than one good way to approach the problem.
What's with the Stirling numbers?
As Jason points out, the f(N,L) numbers are precisely the (unsigned) Stirling numbers of the first kind. One can see this immediately from the recursive formulas for each. However, it's always nice to be able to see it directly, so here goes.
The (unsigned) Stirling numbers of the First Kind, denoted S(N,L) count the number of permutations of N into L cycles. Given a permutation written in cycle notation, we write the permutation in canonical form by beginning the cycle with the largest number in that cycle and then ordering the cycles increasingly by the first number of the cycle. For example, the permutation
(2 6) (5 1 4) (3 7)
would be written in canonical form as
(5 1 4) (6 2) (7 3)
Now drop the parentheses and notice that if these are the heights of the blocks, then the number of visible blocks from the left is exactly the number of cycles! This is because the first number of each cycle blocks all other numbers in the cycle, and the first number of each successive cycle is visible behind the previous cycle. Hence this problem is really just a sneaky way to ask you to find a formula for Stirling numbers.
well, just as an empirical solution for small N:
blocks.py:
import itertools
from collections import defaultdict
def countPermutation(p):
n = 0
max = 0
for block in p:
if block > max:
n += 1
max = block
return n
def countBlocks(n):
count = defaultdict(int)
for p in itertools.permutations(range(1,n+1)):
fwd = countPermutation(p)
rev = countPermutation(reversed(p))
count[(fwd,rev)] += 1
return count
def printCount(count, n, places):
for i in range(1,n+1):
for j in range(1,n+1):
c = count[(i,j)]
if c > 0:
print "%*d" % (places, count[(i,j)]),
else:
print " " * places ,
print
def countAndPrint(nmax, places):
for n in range(1,nmax+1):
printCount(countBlocks(n), n, places)
print
and sample output:
blocks.countAndPrint(10)
1
1
1
1 1
1 2
1
2 3 1
2 6 3
3 3
1
6 11 6 1
6 22 18 4
11 18 6
6 4
1
24 50 35 10 1
24 100 105 40 5
50 105 60 10
35 40 10
10 5
1
120 274 225 85 15 1
120 548 675 340 75 6
274 675 510 150 15
225 340 150 20
85 75 15
15 6
1
720 1764 1624 735 175 21 1
720 3528 4872 2940 875 126 7
1764 4872 4410 1750 315 21
1624 2940 1750 420 35
735 875 315 35
175 126 21
21 7
1
5040 13068 13132 6769 1960 322 28 1
5040 26136 39396 27076 9800 1932 196 8
13068 39396 40614 19600 4830 588 28
13132 27076 19600 6440 980 56
6769 9800 4830 980 70
1960 1932 588 56
322 196 28
28 8
1
40320 109584 118124 67284 22449 4536 546 36 1
40320 219168 354372 269136 112245 27216 3822 288 9
109584 354372 403704 224490 68040 11466 1008 36
118124 269136 224490 90720 19110 2016 84
67284 112245 68040 19110 2520 126
22449 27216 11466 2016 126
4536 3822 1008 84
546 288 36
36 9
1
You'll note a few obvious (well, mostly obvious) things from the problem statement:
the total # of permutations is always N!
with the exception of N=1, there is no solution for L,R = (1,1): if a count in one direction is 1, then it implies the tallest block is on that end of the stack, so the count in the other direction has to be >= 2
the situation is symmetric (reverse each permutation and you reverse the L,R count)
if p is a permutation of N-1 blocks and has count (Lp,Rp), then the N permutations of block N inserted in each possible spot can have a count ranging from L = 1 to Lp+1, and R = 1 to Rp + 1.
From the empirical output:
the leftmost column or topmost row (where L = 1 or R = 1) with N blocks is the sum of the
rows/columns with N-1 blocks: i.e. in #PengOne's notation,
b(N,1,R) = sum(b(N-1,k,R-1) for k = 1 to N-R+1
Each diagonal is a row of Pascal's triangle, times a constant factor K for that diagonal -- I can't prove this, but I'm sure someone can -- i.e.:
b(N,L,R) = K * (L+R-2 choose L-1) where K = b(N,1,L+R-1)
So the computational complexity of computing b(N,L,R) is the same as the computational complexity of computing b(N,1,L+R-1) which is the first column (or row) in each triangle.
This observation is probably 95% of the way towards an explicit solution (the other 5% I'm sure involves standard combinatoric identities, I'm not too familiar with those).
A quick check with the Online Encyclopedia of Integer Sequences shows that b(N,1,R) appears to be OEIS sequence A094638:
A094638 Triangle read by rows: T(n,k) =|s(n,n+1-k)|, where s(n,k) are the signed Stirling numbers of the first kind (1<=k<=n; in other words, the unsigned Stirling numbers of the first kind in reverse order).
1, 1, 1, 1, 3, 2, 1, 6, 11, 6, 1, 10, 35, 50, 24, 1, 15, 85, 225, 274, 120, 1, 21, 175, 735, 1624, 1764, 720, 1, 28, 322, 1960, 6769, 13132, 13068, 5040, 1, 36, 546, 4536, 22449, 67284, 118124, 109584, 40320, 1, 45, 870, 9450, 63273, 269325, 723680, 1172700
As far as how to efficiently compute the Stirling numbers of the first kind, I'm not sure; Wikipedia gives an explicit formula but it looks like a nasty sum. This question (computing Stirling #s of the first kind) shows up on MathOverflow and it looks like O(n^2), as PengOne hypothesizes.
Based on #PengOne answer, here is my Javascript implementation:
function g(N, L, R) {
var acc = 0;
for (var k=1; k<=N; k++) {
acc += comb(N-1, k-1) * f(k-1, L-1) * f(N-k, R-1);
}
return acc;
}
function f(N, L) {
if (N==L) return 1;
else if (N<L) return 0;
else {
var acc = 0;
for (var k=1; k<=N; k++) {
acc += comb(N-1, k-1) * f(k-1, L-1) * fact(N-k);
}
return acc;
}
}
function comb(n, k) {
return fact(n) / (fact(k) * fact(n-k));
}
function fact(n) {
var acc = 1;
for (var i=2; i<=n; i++) {
acc *= i;
}
return acc;
}
$("#go").click(function () {
alert(g($("#N").val(), $("#L").val(), $("#R").val()));
});
Here is my construction solution inspired by #PengOne's ideas.
import itertools
def f(blocks, m):
n = len(blocks)
if m > n:
return []
if m < 0:
return []
if n == m:
return [sorted(blocks)]
maximum = max(blocks)
blocks = list(set(blocks) - set([maximum]))
results = []
for k in range(0, n):
for left_set in itertools.combinations(blocks, k):
for left in f(left_set, m - 1):
rights = itertools.permutations(list(set(blocks) - set(left)))
for right in rights:
results.append(list(left) + [maximum] + list(right))
return results
def b(n, l, r):
blocks = range(1, n + 1)
results = []
maximum = max(blocks)
blocks = list(set(blocks) - set([maximum]))
for k in range(0, n):
for left_set in itertools.combinations(blocks, k):
for left in f(left_set, l - 1):
other = list(set(blocks) - set(left))
rights = f(other, r - 1)
for right in rights:
results.append(list(left) + [maximum] + list(right))
return results
# Sample
print b(4, 3, 2) # -> [[1, 2, 4, 3], [1, 3, 4, 2], [2, 3, 4, 1]]
We derive a general solution F(N, L, R) by examining a specific testcase: F(10, 4, 3).
We first consider 10 in the leftmost possible position, the 4th ( _ _ _ 10 _ _ _ _ _ _ ).
Then we find the product of the number of valid sequences in the left and in the right of 10.
Next, we'll consider 10 in the 5th slot, calculate another product and add it to the previous one.
This process will go on until 10 is in the last possible slot, the 8th.
We'll use the variable named pos to keep track of N's position.
Now suppose pos = 6 ( _ _ _ _ _ 10 _ _ _ _ ). In the left of 10, there are 9C5 = (N-1)C(pos-1) sets of numbers to be arranged.
Since only the order of these numbers matters, we could look at 1, 2, 3, 4, 5.
To construct a sequence with these numbers so that 3 = L-1 of them are visible from the left, we can begin by placing 5 in the leftmost possible slot ( _ _ 5 _ _ ) and follow similar steps to what we did before.
So if F were defined recursively, it could be used here.
The only difference now is that the order of numbers in the right of 5 is immaterial.
To resolve this issue, we'll use a signal, INF (infinity), for R to indicate its unimportance.
Turning to the right of 10, there will be 4 = N-pos numbers left.
We first consider 4 in the last possible slot, position 2 = R-1 from the right ( _ _ 4 _ ).
Here what appears in the left of 4 is immaterial.
But counting arrangements of 4 blocks with the mere condition that 2 of them should be visible from the right is no different than counting arrangements of the same blocks with the mere condition that 2 of them should be visible from the left.
ie. instead of counting sequences like 3 1 4 2, one can count sequences like 2 4 1 3
So the number of valid arrangements in the right of 10 is F(4, 2, INF).
Thus the number of arrangements when pos == 6 is 9C5 * F(5, 3, INF) * F(4, 2, INF) = (N-1)C(pos-1) * F(pos-1, L-1, INF)* F(N-pos, R-1, INF).
Similarly, in F(5, 3, INF), 5 will be considered in a succession of slots with L = 2 and so on.
Since the function calls itself with L or R reduced, it must return a value when L = 1, that is F(N, 1, INF) must be a base case.
Now consider the arrangement _ _ _ _ _ 6 7 10 _ _.
The only slot 5 can take is the first, and the following 4 slots may be filled in any manner; thus F(5, 1, INF) = 4!.
Then clearly F(N, 1, INF) = (N-1)!.
Other (trivial) base cases and details could be seen in the C implementation below.
Here is a link for testing the code
#define INF UINT_MAX
long long unsigned fact(unsigned n) { return n ? n * fact(n-1) : 1; }
unsigned C(unsigned n, unsigned k) { return fact(n) / (fact(k) * fact(n-k)); }
unsigned F(unsigned N, unsigned L, unsigned R)
{
unsigned pos, sum = 0;
if(R != INF)
{
if(L == 0 || R == 0 || N < L || N < R) return 0;
if(L == 1) return F(N-1, R-1, INF);
if(R == 1) return F(N-1, L-1, INF);
for(pos = L; pos <= N-R+1; ++pos)
sum += C(N-1, pos-1) * F(pos-1, L-1, INF) * F(N-pos, R-1, INF);
}
else
{
if(L == 1) return fact(N-1);
for(pos = L; pos <= N; ++pos)
sum += C(N-1, pos-1) * F(pos-1, L-1, INF) * fact(N-pos);
}
return sum;
}

How to count each digit in a range of integers?

Imagine you sell those metallic digits used to number houses, locker doors, hotel rooms, etc. You need to find how many of each digit to ship when your customer needs to number doors/houses:
1 to 100
51 to 300
1 to 2,000 with zeros to the left
The obvious solution is to do a loop from the first to the last number, convert the counter to a string with or without zeros to the left, extract each digit and use it as an index to increment an array of 10 integers.
I wonder if there is a better way to solve this, without having to loop through the entire integers range.
Solutions in any language or pseudocode are welcome.
Edit:
Answers review
John at CashCommons and Wayne Conrad comment that my current approach is good and fast enough. Let me use a silly analogy: If you were given the task of counting the squares in a chess board in less than 1 minute, you could finish the task by counting the squares one by one, but a better solution is to count the sides and do a multiplication, because you later may be asked to count the tiles in a building.
Alex Reisner points to a very interesting mathematical law that, unfortunately, doesn’t seem to be relevant to this problem.
Andres suggests the same algorithm I’m using, but extracting digits with %10 operations instead of substrings.
John at CashCommons and phord propose pre-calculating the digits required and storing them in a lookup table or, for raw speed, an array. This could be a good solution if we had an absolute, unmovable, set in stone, maximum integer value. I’ve never seen one of those.
High-Performance Mark and strainer computed the needed digits for various ranges. The result for one millon seems to indicate there is a proportion, but the results for other number show different proportions.
strainer found some formulas that may be used to count digit for number which are a power of ten.
Robert Harvey had a very interesting experience posting the question at MathOverflow. One of the math guys wrote a solution using mathematical notation.
Aaronaught developed and tested a solution using mathematics. After posting it he reviewed the formulas originated from Math Overflow and found a flaw in it (point to Stackoverflow :).
noahlavine developed an algorithm and presented it in pseudocode.
A new solution
After reading all the answers, and doing some experiments, I found that for a range of integer from 1 to 10n-1:
For digits 1 to 9, n*10(n-1) pieces are needed
For digit 0, if not using leading zeros, n*10n-1 - ((10n-1) / 9) are needed
For digit 0, if using leading zeros, n*10n-1 - n are needed
The first formula was found by strainer (and probably by others), and I found the other two by trial and error (but they may be included in other answers).
For example, if n = 6, range is 1 to 999,999:
For digits 1 to 9 we need 6*105 = 600,000 of each one
For digit 0, without leading zeros, we need 6*105 – (106-1)/9 = 600,000 - 111,111 = 488,889
For digit 0, with leading zeros, we need 6*105 – 6 = 599,994
These numbers can be checked using High-Performance Mark results.
Using these formulas, I improved the original algorithm. It still loops from the first to the last number in the range of integers, but, if it finds a number which is a power of ten, it uses the formulas to add to the digits count the quantity for a full range of 1 to 9 or 1 to 99 or 1 to 999 etc. Here's the algorithm in pseudocode:
integer First,Last //First and last number in the range
integer Number //Current number in the loop
integer Power //Power is the n in 10^n in the formulas
integer Nines //Nines is the resut of 10^n - 1, 10^5 - 1 = 99999
integer Prefix //First digits in a number. For 14,200, prefix is 142
array 0..9 Digits //Will hold the count for all the digits
FOR Number = First TO Last
CALL TallyDigitsForOneNumber WITH Number,1 //Tally the count of each digit
//in the number, increment by 1
//Start of optimization. Comments are for Number = 1,000 and Last = 8,000.
Power = Zeros at the end of number //For 1,000, Power = 3
IF Power > 0 //The number ends in 0 00 000 etc
Nines = 10^Power-1 //Nines = 10^3 - 1 = 1000 - 1 = 999
IF Number+Nines <= Last //If 1,000+999 < 8,000, add a full set
Digits[0-9] += Power*10^(Power-1) //Add 3*10^(3-1) = 300 to digits 0 to 9
Digits[0] -= -Power //Adjust digit 0 (leading zeros formula)
Prefix = First digits of Number //For 1000, prefix is 1
CALL TallyDigitsForOneNumber WITH Prefix,Nines //Tally the count of each
//digit in prefix,
//increment by 999
Number += Nines //Increment the loop counter 999 cycles
ENDIF
ENDIF
//End of optimization
ENDFOR
SUBROUTINE TallyDigitsForOneNumber PARAMS Number,Count
REPEAT
Digits [ Number % 10 ] += Count
Number = Number / 10
UNTIL Number = 0
For example, for range 786 to 3,021, the counter will be incremented:
By 1 from 786 to 790 (5 cycles)
By 9 from 790 to 799 (1 cycle)
By 1 from 799 to 800
By 99 from 800 to 899
By 1 from 899 to 900
By 99 from 900 to 999
By 1 from 999 to 1000
By 999 from 1000 to 1999
By 1 from 1999 to 2000
By 999 from 2000 to 2999
By 1 from 2999 to 3000
By 1 from 3000 to 3010 (10 cycles)
By 9 from 3010 to 3019 (1 cycle)
By 1 from 3019 to 3021 (2 cycles)
Total: 28 cycles
Without optimization: 2,235 cycles
Note that this algorithm solves the problem without leading zeros. To use it with leading zeros, I used a hack:
If range 700 to 1,000 with leading zeros is needed, use the algorithm for 10,700 to 11,000 and then substract 1,000 - 700 = 300 from the count of digit 1.
Benchmark and Source code
I tested the original approach, the same approach using %10 and the new solution for some large ranges, with these results:
Original 104.78 seconds
With %10 83.66
With Powers of Ten 0.07
A screenshot of the benchmark application:
(source: clarion.sca.mx)
If you would like to see the full source code or run the benchmark, use these links:
Complete Source code (in Clarion): http://sca.mx/ftp/countdigits.txt
Compilable project and win32 exe: http://sca.mx/ftp/countdigits.zip
Accepted answer
noahlavine solution may be correct, but l just couldn’t follow the pseudo code, I think there are some details missing or not completely explained.
Aaronaught solution seems to be correct, but the code is just too complex for my taste.
I accepted strainer’s answer, because his line of thought guided me to develop this new solution.
There's a clear mathematical solution to a problem like this. Let's assume the value is zero-padded to the maximum number of digits (it's not, but we'll compensate for that later), and reason through it:
From 0-9, each digit occurs once
From 0-99, each digit occurs 20 times (10x in position 1 and 10x in position 2)
From 0-999, each digit occurs 300 times (100x in P1, 100x in P2, 100x in P3)
The obvious pattern for any given digit, if the range is from 0 to a power of 10, is N * 10N-1, where N is the power of 10.
What if the range is not a power of 10? Start with the lowest power of 10, then work up. The easiest case to deal with is a maximum like 399. We know that for each multiple of 100, each digit occurs at least 20 times, but we have to compensate for the number of times it appears in the most-significant-digit position, which is going to be exactly 100 for digits 0-3, and exactly zero for all other digits. Specifically, the extra amount to add is 10N for the relevant digits.
Putting this into a formula, for upper bounds that are 1 less than some multiple of a power of 10 (i.e. 399, 6999, etc.) it becomes: M * N * 10N-1 + iif(d <= M, 10N, 0)
Now you just have to deal with the remainder (which we'll call R). Take 445 as an example. This is whatever the result is for 399, plus the range 400-445. In this range, the MSD occurs R more times, and all digits (including the MSD) also occur at the same frequencies they would from range [0 - R].
Now we just have to compensate for the leading zeros. This pattern is easy - it's just:
10N + 10N-1 + 10N-2 + ... + **100
Update: This version correctly takes into account "padding zeros", i.e. the zeros in middle positions when dealing with the remainder ([400, 401, 402, ...]). Figuring out the padding zeros is a bit ugly, but the revised code (C-style pseudocode) handles it:
function countdigits(int d, int low, int high) {
return countdigits(d, low, high, false);
}
function countdigits(int d, int low, int high, bool inner) {
if (high == 0)
return (d == 0) ? 1 : 0;
if (low > 0)
return countdigits(d, 0, high) - countdigits(d, 0, low);
int n = floor(log10(high));
int m = floor((high + 1) / pow(10, n));
int r = high - m * pow(10, n);
return
(max(m, 1) * n * pow(10, n-1)) + // (1)
((d < m) ? pow(10, n) : 0) + // (2)
(((r >= 0) && (n > 0)) ? countdigits(d, 0, r, true) : 0) + // (3)
(((r >= 0) && (d == m)) ? (r + 1) : 0) + // (4)
(((r >= 0) && (d == 0)) ? countpaddingzeros(n, r) : 0) - // (5)
(((d == 0) && !inner) ? countleadingzeros(n) : 0); // (6)
}
function countleadingzeros(int n) {
int tmp= 0;
do{
tmp= pow(10, n)+tmp;
--n;
}while(n>0);
return tmp;
}
function countpaddingzeros(int n, int r) {
return (r + 1) * max(0, n - max(0, floor(log10(r))) - 1);
}
As you can see, it's gotten a bit uglier but it still runs in O(log n) time, so if you need to handle numbers in the billions, this will still give you instant results. :-) And if you run it on the range [0 - 1000000], you get the exact same distribution as the one posted by High-Performance Mark, so I'm almost positive that it's correct.
FYI, the reason for the inner variable is that the leading-zero function is already recursive, so it can only be counted in the first execution of countdigits.
Update 2: In case the code is hard to read, here's a reference for what each line of the countdigits return statement means (I tried inline comments but they made the code even harder to read):
Frequency of any digit up to highest power of 10 (0-99, etc.)
Frequency of MSD above any multiple of highest power of 10 (100-399)
Frequency of any digits in remainder (400-445, R = 45)
Additional frequency of MSD in remainder
Count zeros in middle position for remainder range (404, 405...)
Subtract leading zeros only once (on outermost loop)
I'm assuming you want a solution where the numbers are in a range, and you have the starting and ending number. Imagine starting with the start number and counting up until you reach the end number - it would work, but it would be slow. I think the trick to a fast algorithm is to realize that in order to go up one digit in the 10^x place and keep everything else the same, you need to use all of the digits before it 10^x times plus all digits 0-9 10^(x-1) times. (Except that your counting may have involved a carry past the x-th digit - I correct for this below.)
Here's an example. Say you're counting from 523 to 1004.
First, you count from 523 to 524. This uses the digits 5, 2, and 4 once each.
Second, count from 524 to 604. The rightmost digit does 6 cycles through all of the digits, so you need 6 copies of each digit. The second digit goes through digits 2 through 0, 10 times each. The third digit is 6 5 times and 5 100-24 times.
Third, count from 604 to 1004. The rightmost digit does 40 cycles, so add 40 copies of each digit. The second from right digit doers 4 cycles, so add 4 copies of each digit. The leftmost digit does 100 each of 7, 8, and 9, plus 5 of 0 and 100 - 5 of 6. The last digit is 1 5 times.
To speed up the last bit, look at the part about the rightmost two places. It uses each digit 10 + 1 times. In general, 1 + 10 + ... + 10^n = (10^(n+1) - 1)/9, which we can use to speed up counting even more.
My algorithm is to count up from the start number to the end number (using base-10 counting), but use the fact above to do it quickly. You iterate through the digits of the starting number from least to most significant, and at each place you count up so that that digit is the same as the one in the ending number. At each point, n is the number of up-counts you need to do before you get to a carry, and m the number you need to do afterwards.
Now let's assume pseudocode counts as a language. Here, then, is what I would do:
convert start and end numbers to digit arrays start[] and end[]
create an array counts[] with 10 elements which stores the number of copies of
each digit that you need
iterate through start number from right to left. at the i-th digit,
let d be the number of digits you must count up to get from this digit
to the i-th digit in the ending number. (i.e. subtract the equivalent
digits mod 10)
add d * (10^i - 1)/9 to each entry in count.
let m be the numerical value of all the digits to the right of this digit,
n be 10^i - m.
for each digit e from the left of the starting number up to and including the
i-th digit, add n to the count for that digit.
for j in 1 to d
increment the i-th digit by one, including doing any carries
for each digit e from the left of the starting number up to and including
the i-th digit, add 10^i to the count for that digit
for each digit e from the left of the starting number up to and including the
i-th digit, add m to the count for that digit.
set the i-th digit of the starting number to be the i-th digit of the ending
number.
Oh, and since the value of i increases by one each time, keep track of your old 10^i and just multiply it by 10 to get the new one, instead of exponentiating each time.
To reel of the digits from a number, we'd only ever need to do a costly string conversion if we couldnt do a mod, digits can most quickly be pushed of a number like this:
feed=number;
do
{ digit=feed%10;
feed/=10;
//use digit... eg. digitTally[digit]++;
}
while(feed>0)
that loop should be very fast and can just be placed inside a loop of the start to end numbers for the simplest way to tally the digits.
To go faster, for larger range of numbers, im looking for an optimised method of tallying all digits from 0 to number*10^significance
(from a start to end bazzogles me)
here is a table showing digit tallies of some single significant digits..
these are inclusive of 0, but not the top value itself, -that was an oversight
but its maybe a bit easier to see patterns (having the top values digits absent here)
These tallies dont include trailing zeros,
1 10 100 1000 10000 2 20 30 40 60 90 200 600 2000 6000
0 1 1 10 190 2890 1 2 3 4 6 9 30 110 490 1690
1 0 1 20 300 4000 1 12 13 14 16 19 140 220 1600 2800
2 0 1 20 300 4000 0 2 13 14 16 19 40 220 600 2800
3 0 1 20 300 4000 0 2 3 14 16 19 40 220 600 2800
4 0 1 20 300 4000 0 2 3 4 16 19 40 220 600 2800
5 0 1 20 300 4000 0 2 3 4 16 19 40 220 600 2800
6 0 1 20 300 4000 0 2 3 4 6 19 40 120 600 1800
7 0 1 20 300 4000 0 2 3 4 6 19 40 120 600 1800
8 0 1 20 300 4000 0 2 3 4 6 19 40 120 600 1800
9 0 1 20 300 4000 0 2 3 4 6 9 40 120 600 1800
edit: clearing up my origonal
thoughts:
from the brute force table showing
tallies from 0 (included) to
poweroTen(notinc) it is visible that
a majordigit of tenpower:
increments tally[0 to 9] by md*tp*10^(tp-1)
increments tally[1 to md-1] by 10^tp
decrements tally[0] by (10^tp - 10)
(to remove leading 0s if tp>leadingzeros)
can increment tally[moresignificantdigits] by self(md*10^tp)
(to complete an effect)
if these tally adjustments were applied for each significant digit,
the tally should be modified as though counted from 0 to end-1
the adjustments can be inverted to remove preceeding range (start number)
Thanks Aaronaught for your complete and tested answer.
Here's a very bad answer, I'm ashamed to post it. I asked Mathematica to tally the digits used in all numbers from 1 to 1,000,000, no leading 0s. Here's what I got:
0 488895
1 600001
2 600000
3 600000
4 600000
5 600000
6 600000
7 600000
8 600000
9 600000
Next time you're ordering sticky digits for selling in your hardware store, order in these proportions, you won't be far wrong.
I asked this question on Math Overflow, and got spanked for asking such a simple question. One of the users took pity on me and said if I posted it to The Art of Problem Solving, he would answer it; so I did.
Here is the answer he posted:
http://www.artofproblemsolving.com/Forum/viewtopic.php?p=1741600#1741600
Embarrassingly, my math-fu is inadequate to understand what he posted (the guy is 19 years old...that is so depressing). I really need to take some math classes.
On the bright side, the equation is recursive, so it should be a simple matter to turn it into a recursive function with a few lines of code, by someone who understands the math.
I know this question has an accepted answer but I was tasked with writing this code for a job interview and I think I came up with an alternative solution that is fast, requires no loops and can use or discard leading zeroes as required.
It is in fact quite simple but not easy to explain.
If you list out the first n numbers
1
2
3
.
.
.
9
10
11
It is usual to start counting the digits required from the start room number to the end room number in a left to right fashion, so for the above we have one 1, one 2, one 3 ... one 9, two 1's one zero, four 1's etc. Most solutions I have seen used this approach with some optimisation to speed it up.
What I did was to count vertically in columns, as in hundreds, tens, and units. You know the highest room number so we can calculate how many of each digit there are in the hundreds column via a single division, then recurse and calculate how many in the tens column etc. Then we can subtract the leading zeros if we like.
Easier to visualize if you use Excel to write out the numbers but use a separate column for each digit of the number
A B C
- - -
0 0 1 (assuming room numbers do not start at zero)
0 0 2
0 0 3
.
.
.
3 6 4
3 6 5
.
.
.
6 6 9
6 7 0
6 7 1
^
sum in columns not rows
So if the highest room number is 671 the hundreds column will have 100 zeroes vertically, followed by 100 ones and so on up to 71 sixes, ignore 100 of the zeroes if required as we know these are all leading.
Then recurse down to the tens and perform the same operation, we know there will be 10 zeroes followed by 10 ones etc, repeated six times, then the final time down to 2 sevens. Again can ignore the first 10 zeroes as we know they are leading. Finally of course do the units, ignoring the first zero as required.
So there are no loops everything is calculated with division. I use recursion for travelling "up" the columns until the max one is reached (in this case hundreds) and then back down totalling as it goes.
I wrote this in C# and can post code if anyone interested, haven't done any benchmark timings but it is essentially instant for values up to 10^18 rooms.
Could not find this approach mentioned here or elsewhere so thought it might be useful for someone.
Your approach is fine. I'm not sure why you would ever need anything faster than what you've described.
Or, this would give you an instantaneous solution: Before you actually need it, calculate what you would need from 1 to some maximum number. You can store the numbers needed at each step. If you have a range like your second example, it would be what's needed for 1 to 300, minus what's needed for 1 to 50.
Now you have a lookup table that can be called at will. Doing up to 10,000 would only take a few MB and, what, a few minutes to compute, once?
This doesn't answer your exact question, but it's interesting to note the distribution of first digits according to Benford's Law. For example, if you choose a set of numbers at random, 30% of them will start with "1", which is somewhat counter-intuitive.
I don't know of any distributions describing subsequent digits, but you might be able to determine this empirically and come up with a simple formula for computing an approximate number of digits required for any range of numbers.
If "better" means "clearer," then I doubt it. If it means "faster," then yes, but I wouldn't use a faster algorithm in place of a clearer one without a compelling need.
#!/usr/bin/ruby1.8
def digits_for_range(min, max, leading_zeros)
bins = [0] * 10
format = [
'%',
('0' if leading_zeros),
max.to_s.size,
'd',
].compact.join
(min..max).each do |i|
s = format % i
for digit in s.scan(/./)
bins[digit.to_i] +=1 unless digit == ' '
end
end
bins
end
p digits_for_range(1, 49, false)
# => [4, 15, 15, 15, 15, 5, 5, 5, 5, 5]
p digits_for_range(1, 49, true)
# => [13, 15, 15, 15, 15, 5, 5, 5, 5, 5]
p digits_for_range(1, 10000, false)
# => [2893, 4001, 4000, 4000, 4000, 4000, 4000, 4000, 4000, 4000]
Ruby 1.8, a language known to be "dog slow," runs the above code in 0.135 seconds. That includes loading the interpreter. Don't give up an obvious algorithm unless you need more speed.
If you need raw speed over many iterations, try a lookup table:
Build an array with 2 dimensions: 10 x max-house-number
int nDigits[10000][10] ; // Don't try this on the stack, kids!
Fill each row with the count of digits required to get to that number from zero.
Hint: Use the previous row as a start:
n=0..9999:
if (n>0) nDigits[n] = nDigits[n-1]
d=0..9:
nDigits[n][d] += countOccurrencesOf(n,d) //
Number of digits "between" two numbers becomes simple subtraction.
For range=51 to 300, take the counts for 300 and subtract the counts for 50.
0's = nDigits[300][0] - nDigits[50][0]
1's = nDigits[300][1] - nDigits[50][1]
2's = nDigits[300][2] - nDigits[50][2]
3's = nDigits[300][3] - nDigits[50][3]
etc.
You can separate each digit (look here for a example), create a histogram with entries from 0..9 (which will count how many digits appeared in a number) and multiply by the number of 'numbers' asked.
But if isn't what you are looking for, can you give a better example?
Edited:
Now I think I got the problem. I think you can reckon this (pseudo C):
int histogram[10];
memset(histogram, 0, sizeof(histogram));
for(i = startNumber; i <= endNumber; ++i)
{
array = separateDigits(i);
for(j = 0; k < array.length; ++j)
{
histogram[k]++;
}
}
Separate digits implements the function in the link.
Each position of the histogram will have the amount of each digit. For example
histogram[0] == total of zeros
histogram[1] == total of ones
...
Regards

Resources