can common overriding code be shared - ruby

I am new to ruby and I'm hoping someone can help me. I am writing tests using test::unit and within my tests I needed to run some code before an assert was called so I overrided the assert methods like so:
class TestSomething < Test::Unit::TestCase
def assert_equal(expected, actual, message = nil)
mycode ..
super(expected, actual, message)
end
def assert(object, message)
my code ...
super(object, message)
end
def assert_not_nil(object, message = "")
my code ...
super(object, message)
end
def setup
end
def test_case1
end
def test_case1
end
def teardown
end
end
The above structure works fine and the asserts call my code. The thing is I have 100s of test classes. The assert overriding will be the same for all of them. Do I have to copy the assert overrides to the top of every class or is there a way for all of them to get the assert overrides in one go?
One more question. Is there a way of catching an error if it occurs anywhere within the entire class?
A

I am not sure why you do not want to use before filter, but the question as it was stated has an answer: since ruby classes are open, one might do the following.
class Test::Unit::TestCase
# store the original
alias_method :assert_equal_original, :assert_equal
# override
def assert_equal *args
# mycode ..
assert_equal_original *args
end
# the same for other methods
end
Once it is done, any derived class will call my_code before calling the original method.
To catch an error within the scope of the class is impossible, AFAIK.

Related

Ruby: why doesn't calling super.method work from subclass

I apologize up front. I'm going to struggle articulating this question.
TL;DR - I have an object I'm using to call a method in the subclass. That method needs access to a method in a parent class (forcing inheritance...read below). I'm thinking this won't work because I'm instantiating the subclass, so the inheritance won't work right, but I'm not sure. I'm still seeking out documentation. Basically, the method in the parent class is not "seen" the way I'm doing this - NoMethodError is the exception.
I prefer DRY code, as most people do. I usually use compositing in lieu of inheritance in my code, but I think I'm at a point where if I want to keep this DRY, I have to use inheritance (though I could be wrong, so I'm open to suggestions), and so I'm trying it out, which leads me to this question.
Given the following Ruby "pseudo" code or example to kind of demonstrate what I'm trying to accomplish:
module SomeModule
class ParentClass
def initialize
end
def method_i_want_to_use(arg1, *args)
# does all the things
end
def self.method_i_want_to_use(arg1, *args)
arg = args.first unless args.empty?
self.class.method_i_want_to_use(arg1, arg)
end
end
end
And then in a different file, same module
module SomeModule
class SubClass < ParentClass
def initialize
end
# this isn't working
def my_other_method
# things get done and then
method_i_want_to_use(arg1, args) ## <<=== fails
end
end
end
Yet in another file
module SomeModule
class Thing
def initialize
#my_obj = SubClass.new
end
def my_method
#my_obj.my_other_method
end
end
end
So one important thing I missed. The method method_i_want_to_use is a method that is used all over the place in my code. It just so happens that in this one class, inheritance was NOT originally used because this class is basically atomic with the exception of this one method. So my problem is either I copy the method into this class and use it (but that kinda breaks the DRY principle sorta) or I find a way to share this method between classes.
This gets into OOP design pretty heavily and I am aware of that. One could ask: well, is the inheritance as it currently sits even relevant to the objects in question? Yes...and no. They can be. In short, principally, it works, but frankly, I don't like it. TBH, I almost prefer to just copy the method into the "subclass" and remove the inheritance and be done with it, but DRY -- unless I'm going a little too wild with DRY in this context and I kinda think I am.
Anyway, just curious what folks with more knowledge than I have for me on this. This really is the first time I've dabbled this deeply into inheritance. :)
I'd love pointers on how I can keep from implementing
There are two different methods here:
an instance method:
def method_i_want_to_use(arg1, *args)
# does all the things
end
and a class method:
def self.method_i_want_to_use(arg1, *args)
arg = args.first unless args.empty?
self.class.method_i_want_to_use(arg1, arg)
end
but what you probably want in this case is
def self.method_i_want_to_use(arg1, *args)
arg = args.first unless args.empty?
self.new.method_i_want_to_use(arg1, arg)
end
There are a few choices and it depends on what method_i_want_to_use is doing. Is it a separate thing? Then you can call it as a class method ParentClass.method_i_want_to_use inside the SubClass without inheritance.
Another way is to define it in a module and include it
include ModuleX
# and then in your code
method_i_want_to_use(...)
I'd use inheritance if you want to have some kind of common abstraction layer and you expect multiple subclasses to behave the same way. If the classes/objects that need to use method_i_want_to_use have different behaviours then inheritance is not the correct choice. Let's say you have a class that send a request to a 3rd party API and you have a class that does saves records to your db. For some reason you need to use the same piece of code (a method) in both cases, maybe to calculate some value. Using inheritance to include the method would be a mistake, because both classes have different behaviours.
Hope that helps.
After fixing some of the syntax errors and changing the call self.class.method_i_want_to_use to self.new.method_i_want_to_use as Adam also mentioned in his answer, this code seems to work fine.
I did not get any undefined methods until I tried to call SomeModule::ParentClass.method_i_want_to_use(3,4) and that was fixed by the change from class to new. Are you sure your undefined method error was not related to that?
module SomeModule
class ParentClass
def initialize
end
def method_i_want_to_use(arg1, *args)
# does all the things
puts "here #{arg1} , #{args}"
end
def self.method_i_want_to_use(arg1, *args)
arg = args.first unless args.empty?
self.new.method_i_want_to_use(arg1, arg)
end
end
end
module SomeModule
class SubClass < ParentClass
def initialize
end
# this isn't working
def my_other_method(arg1, arg2)
# things get done and then
method_i_want_to_use(arg1, arg2) ## <<=== fails
end
end
end
module SomeModule
class Thing
def initialize
#my_obj = SubClass.new
end
def my_method(arg1,arg2)
#my_obj.my_other_method(arg1, arg2)
end
end
end
SomeModule::Thing.new.my_method(1,2)
SomeModule::ParentClass.method_i_want_to_use(3,4)
prints:
here 1 , [2]
here 3 , [4]

Testing nested, asynchronous Sidekiq jobs with rspec

Lets say I have the following base Ruby class:
class BaseWorker
include Sidekiq::Worker
end
and the following two queues and one helper class:
class Finder
class << self
def find(id)
AwesomeDBClass.find(id)
end
end
end
class Queue1 extend BaseWorker
def perform(variable)
if variable.some_attribute
...
end
end
end
class Queue2 extend BaseWorker
def perform id
local_variable = Finder.find(id)
Queue1.perform_async(local_variable)
end
end
And the following test harness:
let(:local_variable) do
double(:local_var, some_attribute: true)
end
let(:local_variable2) do
OpenStruct(some_attribute: true)
end
before do
allow(Finder).to_receive(:find).and_return(:local_variable)
... code that triggers queue2 ...
queue2.drain
queue1.drain
end
This fails if local_variable (the double) is returned with:
undefined method `some_attribute' for {"__expired"=>false, "name"=>"local_variable"}:Hash
And if local_variable2 (the openstruct) is returned with:
undefined method `some_attribute' for {"table"=>{"some_attribute"=>true}}:Hash
interestingly, if inspecting either in queue2 (with a puts say) their values are correct.
Also, when reading the code for the two libraries:
https://github.com/ruby/ruby/blob/trunk/lib/ostruct.rb#L93
https://github.com/rspec/rspec-mocks/blob/31baac3ace4ec0aff97d9e4e1928b06d18c685f8/lib/rspec/mocks/test_double.rb#L10
It seems that the state suggest that the constructor has run, but some other thing (method_missing binding, eg other method definitions on the class and/or assign_stubs running) has not happened. Any ideas as to how or why this is happening would be appreciated.
TL;DR Use simple hashes instead of OpenStruct instances as params to perform.
Sidekiq serializes everything to Redis, please refer to Best Practices. OpenStruct is not a good candidate as a parameter to be passed to perform.
Minor sidenote: since Sidekiq overrides included callback, it would be more idiomatic to:
class BaseWorker
def self.extended base
base.send :include, Sidekiq::Worker
end
end

Extending an instance with methods from another instance of another class

Currently I am doing something like the following to have the Runnable classes' run method access methods of the ExecutionContext:
class ExecutionContext
def message(text)
puts "ExecutionContext.message: #{text}"
end
def answer?
puts "ExecutionContext.answer called"
true
end
end
class Controller
def do_run(context)
#context = context
run
#context = nil
end
def method_missing(mth, *args)
#context.send(mth, *args)
end
end
class Runnable < Controller
def run
if answer?
message "Runnable's block executing!"
end
end
end
runnable = Runnable.new
context = ExecutionContext.new
runnable.do_run(context)
The idea is that the Runnable class is written by "end users" who want to access functionality (such as the message and answer? methods) of an ExecutionContext instance which is provided from elsewhere. In fact, the Runnable class is all the "end user" is concerned about and it should be as small and simple as possible.
The code above works as expected in that all methods called by Runnable.run are provided by the ExecutionContext.
However I am wondering if there is a more elegant way to achieve the same thing, where I can avoid using method_missing and defining the temporary #context instance variable.
Ideally, I would like to modify the code to something similar to this (ExecutionContext stays the same):
class Controller
def do_run(context, runnable)
runnable.extend_from_instance(context)
runnable.run
end
end
class Runnable
def run
if answer?
message "Runnable's block executing!"
end
end
end
runnable = Runnable.new
context = ExecutionContext.new
Controller.new.do_run(context, runnable)
Is there such thing as extend_from_instance?
Update
Thanks everyone for looking into this.
Since it has come up in the two answers I got so far, I realised I should mention the following restrictions: Unfortunately neither Runnable nor ExecutionContext can be turned into modules. They need to be classes as their instances will behave differently for different cases (both will have their own instance variables etc).
I really need the run method to execute as if it was part of the ExecutionContext instance (context in the code).
Yes, you don't want to use method_missing in this case.
I don't really understand what you are trying to accomplish. Perhaps define_block is not the correct name...?
However, a module seems to have the functionality that you want.
module Messaging
def message(text)
puts "Provider.message: #{text}"
end
end
class Parent
include Messaging
...
EDIT: I think you want to use binding. It allows you to pass the current scope (context) to another scope.
def print_local binding
puts 'local is ' + binding.eval('local')
end
def foo
local = 'value'
print_local binding
end
foo
=> local is value
In this case, print_local wants to print foo's local variable. But it doesn't have access to it because local exists only in foo's scope (or context).
So, you can pass in foo's scope as binding.
See binding.
I think what B Seven said was correct. It makes the most sense to create the shared functionality in a Module and include that module in the class. However if you really want something like your extend_from_instance you can use Ruby's Object#extend method to dynamically extend the module in an instance of the class (though I think this is a bad idea). Working form your desired code:
module ExecutionContext
def message(text)
puts "ExecutionContext.message: #{text}"
end
def answer?
puts "ExecutionContext.answer called"
true
end
end
class Controller
def do_run(context_module, runnable)
runnable.extend(context_module)
runnable.run
end
end
class Runnable
def run
if answer?
message "Runnable's block executing!"
end
end
end
runnable = Runnable.new
Controller.new.do_run(ExecutionContext, runnable)
Again though, this is a bad idea and will probably come back to bite you in the long run.

How do I "fake" C# style attributes in Ruby?

EDIT: I slightly changed the spec, to better match what I imagined this to do.
Well, I don't really want to fake C# attributes, I want to one-up-them and support AOP as well.
Given the program:
class Object
def Object.profile
# magic code here
end
end
class Foo
# This is the fake attribute, it profiles a single method.
profile
def bar(b)
puts b
end
def barbar(b)
puts(b)
end
comment("this really should be fixed")
def snafu(b)
end
end
Foo.new.bar("test")
Foo.new.barbar("test")
puts Foo.get_comment(:snafu)
Desired output:
Foo.bar was called with param: b = "test"
test
Foo.bar call finished, duration was 1ms
test
This really should be fixed
Is there any way to achieve this?
I have a somewhat different approach:
class Object
def self.profile(method_name)
return_value = nil
time = Benchmark.measure do
return_value = yield
end
puts "#{method_name} finished in #{time.real}"
return_value
end
end
require "benchmark"
module Profiler
def method_added(name)
profile_method(name) if #method_profiled
super
end
def profile_method(method_name)
#method_profiled = nil
alias_method "unprofiled_#{method_name}", method_name
class_eval <<-ruby_eval
def #{method_name}(*args, &blk)
name = "\#{self.class}##{method_name}"
msg = "\#{name} was called with \#{args.inspect}"
msg << " and a block" if block_given?
puts msg
Object.profile(name) { unprofiled_#{method_name}(*args, &blk) }
end
ruby_eval
end
def profile
#method_profiled = true
end
end
module Comment
def method_added(name)
comment_method(name) if #method_commented
super
end
def comment_method(method_name)
comment = #method_commented
#method_commented = nil
alias_method "uncommented_#{method_name}", method_name
class_eval <<-ruby_eval
def #{method_name}(*args, &blk)
puts #{comment.inspect}
uncommented_#{method_name}(*args, &blk)
end
ruby_eval
end
def comment(text)
#method_commented = text
end
end
class Foo
extend Profiler
extend Comment
# This is the fake attribute, it profiles a single method.
profile
def bar(b)
puts b
end
def barbar(b)
puts(b)
end
comment("this really should be fixed")
def snafu(b)
end
end
A few points about this solution:
I provided the additional methods via modules which could be extended into new classes as needed. This avoids polluting the global namespace for all modules.
I avoided using alias_method, since module includes allow AOP-style extensions (in this case, for method_added) without the need for aliasing.
I chose to use class_eval rather than define_method to define the new method in order to be able to support methods that take blocks. This also necessitated the use of alias_method.
Because I chose to support blocks, I also added a bit of text to the output in case the method takes a block.
There are ways to get the actual parameter names, which would be closer to your original output, but they don't really fit in a response here. You can check out merb-action-args, where we wrote some code that required getting the actual parameter names. It works in JRuby, Ruby 1.8.x, Ruby 1.9.1 (with a gem), and Ruby 1.9 trunk (natively).
The basic technique here is to store a class instance variable when profile or comment is called, which is then applied when a method is added. As in the previous solution, the method_added hook is used to track when the new method is added, but instead of removing the hook each time, the hook checks for an instance variable. The instance variable is removed after the AOP is applied, so it only applies once. If this same technique was used multiple time, it could be further abstracted.
In general, I tried to stick as close to your "spec" as possible, which is why I included the Object.profile snippet instead of implementing it inline.
Great question. This is my quick attempt at an implementation (I did not try to optimise the code). I took the liberty of adding the profile method to the
Module class. In this way it will be available in every class and module definition. It would be even better
to extract it into a module and mix it into the class Module whenever you need it.
I also didn't know if the point was to make the profile method behave like Ruby's public/protected/private keywords,
but I implemented it like that anyway. All methods defined after calling profile are profiled, until noprofile is called.
class Module
def profile
require "benchmark"
#profiled_methods ||= []
class << self
# Save any original method_added callback.
alias_method :__unprofiling_method_added, :method_added
# Create new callback.
def method_added(method)
# Possible infinite loop if we do not check if we already replaced this method.
unless #profiled_methods.include?(method)
#profiled_methods << method
unbound_method = instance_method(method)
define_method(method) do |*args|
puts "#{self.class}##{method} was called with params #{args.join(", ")}"
bench = Benchmark.measure do
unbound_method.bind(self).call(*args)
end
puts "#{self.class}##{method} finished in %.5fs" % bench.real
end
# Call the original callback too.
__unprofiling_method_added(method)
end
end
end
end
def noprofile # What's the opposite of profile?
class << self
# Remove profiling callback and restore previous one.
alias_method :method_added, :__unprofiling_method_added
end
end
end
You can now use it as follows:
class Foo
def self.method_added(method) # This still works.
puts "Method '#{method}' has been added to '#{self}'."
end
profile
def foo(arg1, arg2, arg3 = nil)
puts "> body of foo"
sleep 1
end
def bar(arg)
puts "> body of bar"
end
noprofile
def baz(arg)
puts "> body of baz"
end
end
Call the methods as you would normally:
foo = Foo.new
foo.foo(1, 2, 3)
foo.bar(2)
foo.baz(3)
And get benchmarked output (and the result of the original method_added callback just to show that it still works):
Method 'foo' has been added to 'Foo'.
Method 'bar' has been added to 'Foo'.
Method 'baz' has been added to 'Foo'.
Foo#foo was called with params 1, 2, 3
> body of foo
Foo#foo finished in 1.00018s
Foo#bar was called with params 2
> body of bar
Foo#bar finished in 0.00016s
> body of baz
One thing to note is that it is impossible to dynamically get the name of the arguments with Ruby meta-programming.
You'd have to parse the original Ruby file, which is certainly possible but a little more complex. See the parse_tree and ruby_parser
gems for details.
A fun improvement would be to be able to define this kind of behaviour with a class method in the Module class. It would be cool to be able to do something like:
class Module
method_wrapper :profile do |*arguments|
# Do something before calling method.
yield *arguments # Call original method.
# Do something afterwards.
end
end
I'll leave this meta-meta-programming exercise for another time. :-)

Ruby design pattern: How to make an extensible factory class?

Ok, suppose I have Ruby program to read version control log files and do something with the data. (I don't, but the situation is analogous, and I have fun with these analogies). Let's suppose right now I want to support Bazaar and Git. Let's suppose the program will be executed with some kind of argument indicating which version control software is being used.
Given this, I want to make a LogFileReaderFactory which given the name of a version control program will return an appropriate log file reader (subclassed from a generic) to read the log file and spit out a canonical internal representation. So, of course, I can make BazaarLogFileReader and GitLogFileReader and hard-code them into the program, but I want it to be set up in such a way that adding support for a new version control program is as simple as plopping a new class file in the directory with the Bazaar and Git readers.
So, right now you can call "do-something-with-the-log --software git" and "do-something-with-the-log --software bazaar" because there are log readers for those. What I want is for it to be possible to simply add a SVNLogFileReader class and file to the same directory and automatically be able to call "do-something-with-the-log --software svn" without ANY changes to the rest of the program. (The files can of course be named with a specific pattern and globbed in the require call.)
I know this can be done in Ruby... I just don't how I should do it... or if I should do it at all.
You don't need a LogFileReaderFactory; just teach your LogFileReader class how to instantiate its subclasses:
class LogFileReader
def self.create type
case type
when :git
GitLogFileReader.new
when :bzr
BzrLogFileReader.new
else
raise "Bad log file type: #{type}"
end
end
end
class GitLogFileReader < LogFileReader
def display
puts "I'm a git log file reader!"
end
end
class BzrLogFileReader < LogFileReader
def display
puts "A bzr log file reader..."
end
end
As you can see, the superclass can act as its own factory. Now, how about automatic registration? Well, why don't we just keep a hash of our registered subclasses, and register each one when we define them:
class LogFileReader
##subclasses = { }
def self.create type
c = ##subclasses[type]
if c
c.new
else
raise "Bad log file type: #{type}"
end
end
def self.register_reader name
##subclasses[name] = self
end
end
class GitLogFileReader < LogFileReader
def display
puts "I'm a git log file reader!"
end
register_reader :git
end
class BzrLogFileReader < LogFileReader
def display
puts "A bzr log file reader..."
end
register_reader :bzr
end
LogFileReader.create(:git).display
LogFileReader.create(:bzr).display
class SvnLogFileReader < LogFileReader
def display
puts "Subersion reader, at your service."
end
register_reader :svn
end
LogFileReader.create(:svn).display
And there you have it. Just split that up into a few files, and require them appropriately.
You should read Peter Norvig's Design Patterns in Dynamic Languages if you're interested in this sort of thing. He demonstrates how many design patterns are actually working around restrictions or inadequacies in your programming language; and with a sufficiently powerful and flexible language, you don't really need a design pattern, you just implement what you want to do. He uses Dylan and Common Lisp for examples, but many of his points are relevant to Ruby as well.
You might also want to take a look at Why's Poignant Guide to Ruby, particularly chapters 5 and 6, though only if you can deal with surrealist technical writing.
edit: Riffing of off Jörg's answer now; I do like reducing repetition, and so not repeating the name of the version control system in both the class and the registration. Adding the following to my second example will allow you to write much simpler class definitions while still being pretty simple and easy to understand.
def log_file_reader name, superclass=LogFileReader, &block
Class.new(superclass, &block).register_reader(name)
end
log_file_reader :git do
def display
puts "I'm a git log file reader!"
end
end
log_file_reader :bzr do
def display
puts "A bzr log file reader..."
end
end
Of course, in production code, you may want to actually name those classes, by generating a constant definition based on the name passed in, for better error messages.
def log_file_reader name, superclass=LogFileReader, &block
c = Class.new(superclass, &block)
c.register_reader(name)
Object.const_set("#{name.to_s.capitalize}LogFileReader", c)
end
This is really just riffing off Brian Campbell's solution. If you like this, please upvote his answer, too: he did all the work.
#!/usr/bin/env ruby
class Object; def eigenclass; class << self; self end end end
module LogFileReader
class LogFileReaderNotFoundError < NameError; end
class << self
def create type
(self[type] ||= const_get("#{type.to_s.capitalize}LogFileReader")).new
rescue NameError => e
raise LogFileReaderNotFoundError, "Bad log file type: #{type}" if e.class == NameError && e.message =~ /[^: ]LogFileReader/
raise
end
def []=(type, klass)
#readers ||= {type => klass}
def []=(type, klass)
#readers[type] = klass
end
klass
end
def [](type)
#readers ||= {}
def [](type)
#readers[type]
end
nil
end
def included klass
self[klass.name[/[[:upper:]][[:lower:]]*/].downcase.to_sym] = klass if klass.is_a? Class
end
end
end
def LogFileReader type
Here, we create a global method (more like a procedure, actually) called LogFileReader, which is the same name as our module LogFileReader. This is legal in Ruby. The ambiguity is resolved like this: the module will always be preferred, except when it's obviously a method call, i.e. you either put parentheses at the end (Foo()) or pass an argument (Foo :bar).
This is a trick that is used in a few places in the stdlib, and also in Camping and other frameworks. Because things like include or extend aren't actually keywords, but ordinary methods that take ordinary parameters, you don't have to pass them an actual Module as an argument, you can also pass anything that evaluates to a Module. In fact, this even works for inheritance, it is perfectly legal to write class Foo < some_method_that_returns_a_class(:some, :params).
With this trick, you can make it look like you are inheriting from a generic class, even though Ruby doesn't have generics. It's used for example in the delegation library, where you do something like class MyFoo < SimpleDelegator(Foo), and what happens, is that the SimpleDelegator method dynamically creates and returns an anonymous subclass of the SimpleDelegator class, which delegates all method calls to an instance of the Foo class.
We use a similar trick here: we are going to dynamically create a Module, which, when it is mixed into a class, will automatically register that class with the LogFileReader registry.
LogFileReader.const_set type.to_s.capitalize, Module.new {
There's a lot going on in just this line. Let's start from the right: Module.new creates a new anonymous module. The block passed to it, becomes the body of the module – it's basically the same as using the module keyword.
Now, on to const_set. It's a method for setting a constant. So, it's the same as saying FOO = :bar, except that we can pass in the name of the constant as a parameter, instead of having to know it in advance. Since we are calling the method on the LogFileReader module, the constant will be defined inside that namespace, IOW it will be named LogFileReader::Something.
So, what is the name of the constant? Well, it's the type argument passed into the method, capitalized. So, when I pass in :cvs, the resulting constant will be LogFileParser::Cvs.
And what do we set the constant to? To our newly created anonymous module, which is now no longer anonymous!
All of this is really just a longwinded way of saying module LogFileReader::Cvs, except that we didn't know the "Cvs" part in advance, and thus couldn't have written it that way.
eigenclass.send :define_method, :included do |klass|
This is the body of our module. Here, we use define_method to dynamically define a method called included. And we don't actually define the method on the module itself, but on the module's eigenclass (via a small helper method that we defined above), which means that the method will not become an instance method, but rather a "static" method (in Java/.NET terms).
included is actually a special hook method, that gets called by the Ruby runtime, everytime a module gets included into a class, and the class gets passed in as an argument. So, our newly created module now has a hook method that will inform it whenever it gets included somewhere.
LogFileReader[type] = klass
And this is what our hook method does: it registers the class that gets passed into the hook method into the LogFileReader registry. And the key that it registers it under, is the type argument from the LogFileReader method way above, which, thanks to the magic of closures, is actually accessible inside the included method.
end
include LogFileReader
And last but not least, we include the LogFileReader module in the anonymous module. [Note: I forgot this line in the original example.]
}
end
class GitLogFileReader
def display
puts "I'm a git log file reader!"
end
end
class BzrFrobnicator
include LogFileReader
def display
puts "A bzr log file reader..."
end
end
LogFileReader.create(:git).display
LogFileReader.create(:bzr).display
class NameThatDoesntFitThePattern
include LogFileReader(:darcs)
def display
puts "Darcs reader, lazily evaluating your pure functions."
end
end
LogFileReader.create(:darcs).display
puts 'Here you can see, how the LogFileReader::Darcs module ended up in the inheritance chain:'
p LogFileReader.create(:darcs).class.ancestors
puts 'Here you can see, how all the lookups ended up getting cached in the registry:'
p LogFileReader.send :instance_variable_get, :#readers
puts 'And this is what happens, when you try instantiating a non-existent reader:'
LogFileReader.create(:gobbledigook)
This new expanded version allows three different ways of defining LogFileReaders:
All classes whose name matches the pattern <Name>LogFileReader will automatically be found and registered as a LogFileReader for :name (see: GitLogFileReader),
All classes that mix in the LogFileReader module and whose name matches the pattern <Name>Whatever will be registered for the :name handler (see: BzrFrobnicator) and
All classes that mix in the LogFileReader(:name) module, will be registered for the :name handler, regardless of their name (see: NameThatDoesntFitThePattern).
Please note that this is just a very contrived demonstration. It is, for example, definitely not thread-safe. It might also leak memory. Use with caution!
One more minor suggestion for Brian Cambell's answer -
In you can actually auto-register the subclasses with an inherited callback. I.e.
class LogFileReader
cattr_accessor :subclasses; self.subclasses = {}
def self.inherited(klass)
# turns SvnLogFileReader in to :svn
key = klass.to_s.gsub(Regexp.new(Regexp.new(self.to_s)),'').underscore.to_sym
# self in this context is always LogFileReader
self.subclasses[key] = klass
end
def self.create(type)
return self.subclasses[type.to_sym].new if self.subclasses[type.to_sym]
raise "No such type #{type}"
end
end
Now we have
class SvnLogFileReader < LogFileReader
def display
# do stuff here
end
end
With no need to register it
This should work too, without the need for registering class names
class LogFileReader
def self.create(name)
classified_name = name.to_s.split('_').collect!{ |w| w.capitalize }.join
Object.const_get(classified_name).new
end
end
class GitLogFileReader < LogFileReader
def display
puts "I'm a git log file reader!"
end
end
and now
LogFileReader.create(:git_log_file_reader).display
This is how I would make an extensible factory class.
module Factory
class Error < RuntimeError
end
class Base
##registry = {}
class << self
def inherited(klass)
type = klass.name.downcase.to_sym
##registry[type] = klass
end
def create(type, *args, **kwargs)
klass = ##registry[type]
return klass.new(*args, **kwargs) if klass
raise Factory::Error.new "#{type} is unknown"
end
end
end
end
class Animal < Factory::Base
attr_accessor :name
def initialize(name)
#name = name
end
def walk?
raise NotImplementedError
end
end
class Cat < Animal
def walk?; true; end
end
class Fish < Animal
def walk?; false; end
end
class Salmon < Fish
end
duck = Animal.create(:cat, "Garfield")
salmon = Animal.create(:salmon, "Alfredo")
pixou = Animal.create(:duck, "Pixou") # duck is unknown (Factory::Error)

Resources