Does the built-in http server implement non-blocking I/O? - nonblocking

This is a first server-side swift framework available now. I am interested to use it for high traffic mobile app server.
Does this swift based framework implement the non-blocking I/O http server?

Yes, the internal networking in Perfect is all non-blocking. This is the case if you are doing raw TCP comms., using the built-in HTTP server or the FastCGI server. Check out the NetTCP and NetNamedPipe classes. They take callbacks when you connect, accept, read or write data. All of the relevant functions take a timeout parameter as well. You can optionally accept custom server connections in a blocking loop.
The individual web handlers are non-blocking as well in that you call a callback to tell the system that you are done with the request. The system will complete the current request and await others utilizing keep-alive.

Related

What is the relationship between vert.x, sockJS, and websockets?

I'm extremely new to all of this, but from my understanding, websockets allow for a bidirectional transfer of information between browsers. Vert.x is a library that allows for asynchronous I/O. And sockJS is a JavaScript library that attempts to use websockets for communication, and provides fallback options otherwise.
But if I'm writing something in Java using vert.x, I don't quite understand how the pieces fit together. Does vert.x actually support websockets? Or do I need a combination of vert.x and sockJS to make that happen?
HTTP(s) is a stateless protocol, which means that once its job is done it will be idle till the next job is given.
So lets take an example of chat application, assume A is chatting with B using HTTP protocol. B has sent a message which is in server, now until A refreshes the browser, B's message will not appear. That's stateless behavior.
Coming to sockets, which is not stateless. Sockets use ws protocol which is always connected to the server. Taking the same example, now if B sends a message, A's socket will fetch and display to the browser, without the need to refresh. That's how sockets work.
To serve a webpage you need an http server. Similarly to use sockets, sockets server is needed. Which is provided by Vert.x. So Vert.x will start socket server, your browser will listen to that server using clientside sock.js file.

The theory of websockets with API

I have an API running on a server, which handle users connection and a messaging system.
Beside that, I launched a websocket on that same server, waiting for connections and stuff.
And let's say we can get access to this by an Android app.
I'm having troubles to figure out what I should do now, here are my thoughts:
1 - When a user connect to the app, the API connect to the websocket. We allow the Android app only to listen on this socket to get new messages. When the user want to answer, the Android app send a message to the API. The API writes itself the received message to the socket, which will be read back by the Android app used by another user.
This way, the API can store the message in database before writing it in the socket.
2- The API does not connect to the websocket in any way. The Android app listen and write to the websocket when needed, and should, when writing to the websocket, also send a request to the API so it can store the message in DB.
May be none of the above is correct, please let me know
EDIT
I already understood why I should use a websocket, seems like it's the best way to have this "real time" system (when getting a new message for example) instead of forcing the client to make an HTTP request every x seconds to check if there are new messages.
What I still don't understand, is how it is suppose to communicate with my database. Sorry if my example is not clear, but I'll try to keep going with it :
My messaging system need to store all messages in my API database, to have some kind of historic of the conversation.
But it seems like a websocket must be running separately from the API, I mean it's another program right? Because it's not for HTTP requests
So should the API also listen to this websocket to catch new messages and store them?
You really have not described what the requirements are for your application so it's hard for us to directly advise what your app should do. You really shouldn't start out your analysis by saying that you have a webSocket and you're trying to figure out what to do with it. Instead, lay out the requirements of your app and figure out what technology will best meet those requirements.
Since your requirements are not clear, I'll talk about what a webSocket is best used for and what more traditional http requests are best used for.
Here are some characteristics of a webSocket:
It's designed to be continuously connected over some longer duration of time (much longer than the duration of one exchange between client and server).
The connection is typically made from a client to a server.
Once the connection is established, then data can be sent in either direction from client to server or from server to client at any time. This is a huge difference from a typical http request where data can only be requested by the client - with an http request the server can not initiate the sending of data to the client.
A webSocket is not a request/response architecture by default. In fact to make it work like request/response requires building a layer on top of the webSocket protocol so you can tell which response goes with which request. http is natively request/response.
Because a webSocket is designed to be continuously connected (or at least connected for some duration of time), it works very well (and with lower overhead) for situations where there is frequent communication between the two endpoints. The connection is already established and data can just be sent without any connection establishment overhead. In addition, the overhead per message is typically smaller with a webSocket than with http.
So, here are a couple typical reasons why you might choose one over the other.
If you need to be able to send data from server to client without having the client regular poll for new data, then a webSocket is very well designed for that and http cannot do that.
If you are frequently sending lots of small bits of data (for example, a temperature probe sending the current temperature every 10 seconds), then a webSocket will incur less network and server overhead than initiating a new http request for every new piece of data.
If you don't have either of the above situations, then you may not have any real need for a webSocket and an http request/response model may just be simpler.
If you really need request/response where a specific response is tied to a specific request, then that is built into http and is not a built-in feature of webSockets.
You may also find these other posts useful:
What are the pitfalls of using Websockets in place of RESTful HTTP?
What's the difference between WebSocket and plain socket communication?
Push notification | is websocket mandatory?
How does WebSockets server architecture work?
Response to Your Edit
But it seems like a websocket must be running separately from the API,
I mean it's another program right? Because it's not for HTTP requests
The same process that supports your API can also be serving the webSocket connections. Thus, when you get incoming data on the webSocket, you can just write it directly to the database the same way the API would access the database. So, NO the webSocket server does not have to be a separate program or process.
So should the API also listen to this websocket to catch new messages
and store them?
No, I don't think so. Only one process can be listening to a set of incoming webSocket connections.

How does WebSockets server architecture work?

I'm trying to get a better understanding of how the server-side architecture works for WebSockets with the goal of implementing it in an embedded application. It seems that there are 3 different server-side software components in play here: 1) the web server to serve static HTTP pages and handle upgrade request, 2) a WebSockets library such as libwebsockets to handle the "nuts and bolts" of WebSockets communications, and 3) my custom application to actually figure out what to do with incoming data. How do all these fit together? Is it common to have a separate web server and WebSocket handling piece, aka a WebSocket server/daemon?
How does my application communicate with the web server and/or WebSockets library to send/receive data? For example, with CGI, the web server uses environmental variables to send info to the custom application, and stdout to receive responses. What is the equivalent communication system here? Or do you typically link in a WebSocket library into the customer application? But then how would communication with the web server to the WebSocket library + custom application work? Or all 3 combined into a single component?
Here's why I am asking. I'm using the boa web server on a uClinux/no MMU platform on a Blackfin processor with limited memory. There is no native WebSocket support in boa, only CGI. I'm trying to figure out how I can add WebSockets support to that. I would prefer to use a compiled solution as opposed to something interpreted such as JavaScript, Python or PHP. My current application using long polling over CGI, which does not provide adequate performance for planned enhancements.
First off, it's important to understand how a webSocket connection is established because that plays into an important relationship between webSocket connections and your web server.
Every webSocket connection starts with an HTTP request. The browser sends an HTTP request to the host/port that the webSocket connection is requested on. That request might look something like this:
GET /chat HTTP/1.1
Host: example.com:8000
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Version: 13
What distinguishes this request from any other HTTP request to that server is the Upgrade: websocket header in the request. This tells the HTTP server that this particular request is actually a request to initiate a webSocket connection. This header also allows the web server to tell the difference between a regular HTTP request and a request to open a webSocket connection. This allows something very important in the architecture and it was done this way entirely on purpose. This allows the exact same server and port to be used for both serving your web requests and for webSocket connections. All that is needed is a component on your web server that looks for this Upgrade header on all incoming HTTP connections and, if found, it takes over the connection and turns it into a webSocket connection.
Once the server recognizes this upgrade header, it responds with a legal HTTP response, but one that signals the client that the upgrade to the webSocket protocol has been accepted that looks like this:
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
At that point, both client and server keep that socket from the original HTTP request open and both switch to the webSocket protocol.
Now, to your specific questions:
How does my application communicate with the web server and/or
WebSockets library to send/receive data?
Your application may use the built-in webSocket support in modern browsers and can initiate a webSocket connection like this:
var socket = new WebSocket("ws://www.example.com");
This will instruct the browser to initiate a webSocket connection to www.example.com use the same port that the current web page was connected with. Because of the built-in webSocket support in the browser, the above HTTP request and upgrade protocol is handled for you automatically from the client.
On the server-side of things, you need to make sure you are using a web server that has incoming webSocket support and that the support is enabled and configured. Because a webSocket connection is a continuous connection once established, it does not really follow the CGI model at all. There must be at least one long-running process handling live webSocket connections. In server models (like CGI), you would need some sort of webServer add-on that supports this long-running process for your webSocket connections. In a server environment like node.js which is already a long running process, the addition of webSockets is no change at all architecturally - but rather just an additional library to support the webSocket protocol.
I'd suggest you may find this article interesting as it discussions this transition from CGI-style single request handling to the continuous socket connections of webSocket:
Web Evolution: from CGI to Websockets (and how it will help you better monitor your cloud infrastructure)
If you really want to stick with the stdin/stdout model, there are libraries that model that for your for webSockets. Here's one such library. Their tagline is "It's like CGI, twenty years later, for WebSockets".
I'm trying to figure out how I can add WebSockets support to that. I
would prefer to use a compiled solution as opposed to something
interpreted such as JavaScript, Python or PHP.
Sorry, but I'm not familiar with that particular server environment. It will likely take some in-depth searching to find out what your options are. Since a webSocket connection is a continuous connection, then you will need a process that is running continuously that can be the server-side part of the webSocket connection. This can either be something built into your webServer or it can be an additional process that the webServer starts up and forwards incoming connections to.
FYI, I have a custom application at home here built on a Raspberry Pi that uses webSockets for real-time communication with browser web pages and it works just fine. I happen to be using node.js for the server environment and the socket.io library that runs on top of webSockets to give me a higher level interface on top of webSockets. My server code checks several hardware sensors on a regular interval and then whenever there is new/changed data to report, it sends messages down any open webSockets so the connected browsers get real-time updates on the sensor readings.
You would likely need some long-running application that incoming webSocket connections were passed from the web server to your long running process or you'd need to make the webSocket connections on a different port than your web server (so they could be fielded by a completely different server process) in which case you'd have a whole separate server to handle your webSocket requests and sockets (this server would also have to support CORS to enable browsers to connect to it since it would be a different port than your web pages).

How do I pass the response writer and http request to an executable in Go?

I want to run a simple webserver in Go doing some basic authorisation and routing to multiple apps.
Is it possible to have the webserver running as a standalone executable and pass the response writer and http request to other executables?
The idea is that the app binaries can hopefully be compiled and deployed independently of the webserver.
Memory areas of running applications are isolated: a process cannot just read or write another application's memory (Wikipedia: Process isolation).
So just passing the response writer and the http request is not so easy. And even if you would implement it (e.g. serializing them into binary or text data, sending/passing them over somehow, and reconstructing them on the other side) serving an HTTP request in the background is more than just interacting with the ResponseWriter and Request objects: it involves reading from and writing to the underlying TCP connection... so you would also have to "pass" the TCP connection or create a bridge between the real HTTP client and the application you forward to.
Another option would be to send a redirect back to the client (HTTP 3xx status codes) after doing the authentication and routing logic. With this solution you could have authentication and certain routing logic implemented in your app, but you would lose further routing possibilities because further request would go directly to the designated host.
Essentially what you try to create is the functionality of a proxy server which have plenty of implementations out there. Given the complexity of a good proxy server, it should not be feasible to reproduce one.
I suggest to either utilize an existing proxy server or "refactor" your architecture to avoid this kind of segmentation.

With websockets, is there a place for AJAX?

I'm currently building a realtime application using Node. I'm using socket.io to power my real-time interactions, but have jQuery loaded, so I have AJAX available to me. I initially used socket.io for all my communication between the server and client.
I'm starting to think that AJAX might be better suited for certain cases like doing RESTful transactions asynchronously, because I don't have to write a separate message case in my socket to handle each new transaction as well as write the RESTful routing.
I'm wondering if I am on to something or if its best to use sockets for performance or something else I'm not thinking about.
Thanks!
Matt Mueller
Yes, WebSockets (RFC 6455) and Ajax are quite different and serve different purposes.
As you say, with Ajax you can do RESTful requests. This means that you can take advantage of existing HTTP-infrastructure like e.g. proxies to cache requests and use conditional get requests. Ajax request may be quite heavy-weight since every Ajax request contains HTTP headers and include cookies.
WebSockets is designed for low latency bi-directional communication. By design, WebSockets has very little overhead in each message. E.g. WebSockets messages doesn't have to include any HTTP Headers, and may in future be used for VoIP and streaming in both directions.
Another difference is that Ajax can be used with stateless servers. E.g. if you have your web load balanced with multiple servers, any server can handle an Ajax request, even after reboot (or upgrade). Websocket's are "connected" and use a stateful server, so it may be harder to use multiple servers with it.
There is also Server Sent Events, that are similar to WebSockets, in that the server can push data to the client (which can't be done with Ajax without hacks (e.g. comet)), and it can also handle automatic reconnections. But it's only for messages in one direction (server to client). See HTML5 Server-Side Event: EventSource vs. wrapped WebSocket.
Those are two completely different technologies and could be used together: with AJAX the request is initiated by the client, while with WebSockets the request is initiated by the server in order to push some data to the client.

Resources