Terms Include elastic search numeric values - elasticsearch

The question I have is if there is a way to use a terms include on a numeric field in an elasticsearch aggregation.
I am using a generic query for multiple fields in elastic search and this is fine as most of my fields are string values and I can specify the unique field with an include. However one of my fields is a numeric value and is throwing this error:
"cannot support regular expression style include/exclude settings as
they can only be applied to string fields"
So my question is, is there a an equivalent to string matching include for numeric values? I have tried using a range set from say 9 to 9 to match but it is not returning anything and unfortunately is keyed by the specified range and not the value of the specified field which is what I desire. Any input would be appreciated!
Thanks!

You can pass numbers inside an array like this for exact match
{
"size": 0,
"aggs": {
"numeric_agg": {
"terms": {
"field": "my_field",
"include": [1,2,3]
}
}
}
}
Hope this helps!

Related

Terms query does not work on keyword field which contains an array of values

I am a beginner in Elasticsearch. I recently added a new field jc_job_meta_field which is of keyword type (see image 1 below as I output the mapping of all my fields) and my index is en-gb. I expect it to be an array to hold a bunch of values. And I now have a document with ["Virtual", "Hybrid"] in that field. I wanted to have the ability to search all entries with Virtual in the field jc_job_meta_field. But now when I do a term query search like this
{
"query": {
"terms": {
"jc_job_meta_field": ["Virtual"]
}
}
}
Nothing returned (see image 2 below). Shouldn't it at least return that exact document with [Virtual, Hybrid]? I checked a similar post here and it seems like I am doing exactly what's supposed to work. What went wrong here? Thanks in advance!
My Mapping and field values:
My query:

How to search for an exact value in a keyword array field in ElasticSearch?

I have a Keyword field that is an array and am trying to search for documents that contain one of the values in the array.
A document contains a field called allowed_groups:
"allow_groups" : [
"c4e3f246-0b1f-43cc-831e-37ca620bf083"
],
I have tried a match query
...
"must":[
{
"match": {
"allow_groups": {
"query": "c4e3f246-0b1f-43cc-831e-37ca620bf083"
}
}
},
...
This returns results but as soon as I change a single character (3 at the end of the value to a 4), the documents still return. I need to change the value to something much different for the documents to not return.
I have also tried a term query in its place but cant get documents to come back at all.
I also should mention that in the end I am trying to pass an array of values to be matched against the allow_groups keyword array and return a document when theres at least 1 single exact match. Im just testing with 1 value currently.

Type of field for prefix search in Elastic Search

I'm confused on what index type I should apply for my field for prefix search, many show search_as_you_type but I think auto complete is not what I'm going for.
I have a UUID field:
id: 34y72ca1-3739-41ff-bbec-f6d17479384c
The following terms should return the doc above:
3
34
34y72ca1
34y72ca1-3739
34y72ca1-3739-41ff-bbec-f6d17479384c
Using 3739 should not return it as it doesn't start with 3739. Initially this is what I was going for but then the wildcard field is not supported by Amazon AWS, so I compromise for prefix search instead of partial search.
I tried search_as_you_type field but it doesn't return the result when I use the whole ID. Actually, my use case is when user click enter, the results will be shown, instead of real-live when they type, so if speed is compromised its OK, just that I hope for something that will be good for many rows of data.
Thanks
If you have not explicitly defined any index mapping, then you need to use id.keyword field instead of the id field for the prefix query to show the appropriate results. This uses the keyword analyzer instead of the standard analyzer
{
"query": {
"prefix": {
"id.keyword": {
"value": "34y72ca1"
}
}
}
}
Otherwise, you can modify your index mapping, by adding multi fields for id field

Elasticsearch: What is the difference between a match and a term in a filter?

I was following an ES tutorial, and at some point I wrote a query using term in the filter instead the recommended solution using match. My understanding is that match was used in the query part to get scoring, while term was used in the filter part to just remove hits before enter the query part. To my surprise match also works in the filter part.
What is the difference between:
GET blogs/_search
{
"query": {
"bool": {
"filter": {
"match": {
"category.keyword": "News"
}
}
}
}
}
and:
GET blogs/_search
{
"query": {
"bool": {
"filter": {
"term": {
"category.keyword": "News"
}
}
}
}
}
Both returns the same hits, and the score is 0 for all hits.
What is the behaviour or match in a filter clause? I would expect it to yield some score, but it does not.
What I thought:
term : does not analyze either the parameter or the field, and it is a yes/no scenario.
match : analyzes parameter and field and calculates a score of how good they match.
But when using match against a keyword in the filter part of the query, how does it behave?
The match query is a high-level query that resorts to using a term query if it needs to.
Scoring has nothing to do with using match instead of term. Scoring kicks in when you use bool/must/should instead of bool/filter.
Here is how the match query works:
First, it checks the type of the field.
If it's a text field then the value will be analyzed, either with the analyzer specified in the query (if any), or with the search- or index-time analyzer specified in the mapping.
If it's a keyword field (like in your case), then the input is not analyzed and taken "as is"
Since you're using the match query on a keyword field and your input is a single term, nothing is analyzed and the match query resorts to using a term query underneath. This is why you're seeing the same results.
In general, it's always best to use a match query as it is smart enough to know what to do given the field you're querying and the input data you're searching for.
You can read more about the difference between the two here.

Kibana scripted field which loops through an array

I am trying to use the metricbeat http module to monitor F5 pools.
I make a request to the f5 api and bring back json, which is saved to kibana. But the json contains an array of pool members and I want to count the number which are up.
The advice seems to be that this can be done with a scripted field. However, I can't get the script to retrieve the array. eg
doc['http.f5pools.items.monitor'].value.length()
returns in the preview results with the same 'Additional Field' added for comparison:
[
{
"_id": "rT7wdGsBXQSGm_pQoH6Y",
"http": {
"f5pools": {
"items": [
{
"monitor": "default"
},
{
"monitor": "default"
}
]
}
},
"pool.MemberCount": [
7
]
},
If I try
doc['http.f5pools.items']
Or similar I just get an error:
"reason": "No field found for [http.f5pools.items] in mapping with types []"
Googling suggests that the doc construct does not contain arrays?
Is it possible to make a scripted field which can access the set of values? ie is my code or the way I'm indexing the data wrong.
If not is there an alternative approach within metricbeats? I don't want to have to make a whole new api to do the calculation and add a separate field
-- update.
Weirdly it seems that the number values in the array do return the expected results. ie.
doc['http.f5pools.items.ratio']
returns
{
"_id": "BT6WdWsBXQSGm_pQBbCa",
"pool.MemberCount": [
1,
1
]
},
-- update 2
Ok, so if the strings in the field have different values then you get all the values. if they are the same you just get one. wtf?
I'm adding another answer instead of deleting my previous one which is not the actual question but still may be helpful for someone else in future.
I found a hint in the same documentation:
Doc values are a columnar field value store
Upon googling this further I found this Doc Value Intro which says that the doc values are essentially "uninverted index" useful for operations like sorting; my hypotheses is while sorting you essentially dont want same values repeated and hence the data structure they use removes those duplicates. That still did not answer as to why it works different for string than number. Numbers are preserved but strings are filters into unique.
This “uninverted” structure is often called a “column-store” in other
systems. Essentially, it stores all the values for a single field
together in a single column of data, which makes it very efficient for
operations like sorting.
In Elasticsearch, this column-store is known as doc values, and is
enabled by default. Doc values are created at index-time: when a field
is indexed, Elasticsearch adds the tokens to the inverted index for
search. But it also extracts the terms and adds them to the columnar
doc values.
Some more deep-dive into doc values revealed it a compression technique which actually de-deuplicates the values for efficient and memory-friendly operations.
Here's a NOTE given on the link above which answers the question:
You may be thinking "Well that’s great for numbers, but what about
strings?" Strings are encoded similarly, with the help of an ordinal
table. The strings are de-duplicated and sorted into a table, assigned
an ID, and then those ID’s are used as numeric doc values. Which means
strings enjoy many of the same compression benefits that numerics do.
The ordinal table itself has some compression tricks, such as using
fixed, variable or prefix-encoded strings.
Also, if you dont want this behavior then you can disable doc-values
OK, solved it.
https://discuss.elastic.co/t/problem-looping-through-array-in-each-doc-with-painless/90648
So as I discovered arrays are prefiltered to only return distinct values (except in the case of ints apparently?)
The solution is to use params._source instead of doc[]
The answer for why doc doesnt work
Quoting below:
Doc values are a columnar field value store, enabled by default on all
fields except for analyzed text fields.
Doc-values can only return "simple" field values like numbers, dates,
geo- points, terms, etc, or arrays of these values if the field is
multi-valued. It cannot return JSON objects
Also, important to add a null check as mentioned below:
Missing fields
The doc['field'] will throw an error if field is
missing from the mappings. In painless, a check can first be done with
doc.containsKey('field')* to guard accessing the doc map.
Unfortunately, there is no way to check for the existence of the field
in mappings in an expression script.
Also, here is why _source works
Quoting below:
The document _source, which is really just a special stored field, can
be accessed using the _source.field_name syntax. The _source is loaded
as a map-of-maps, so properties within object fields can be accessed
as, for example, _source.name.first.
.
Responding to your comment with an example:
The kyeword here is: It cannot return JSON objects. The field doc['http.f5pools.items'] is a JSON object
Try running below and see the mapping it creates:
PUT t5/doc/2
{
"items": [
{
"monitor": "default"
},
{
"monitor": "default"
}
]
}
GET t5/_mapping
{
"t5" : {
"mappings" : {
"doc" : {
"properties" : {
"items" : {
"properties" : {
"monitor" : { <-- monitor is a property of items property(Object)
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
}
}
}

Resources