Using symbols to reference blocks in Ruby e.g. :+, :-, :* [duplicate] - ruby

This question already has answers here:
What are :+ and &:+ in Ruby?
(2 answers)
Closed 7 years ago.
I'm learning about the use of symbols in Ruby and have realized they act largely as references to variables, keys in hash tables, and even as a way of sending blocks in methods.
My questions is, what exactly are symbols, such as :+ :- :*, referencing when I use them in a method?
e.g. using :+ to sum all the values in an array:
puts [1,2,3].reduce(:+)
=> 6
gives the same result as:
puts [1,2,3].reduce {|sum, i| sum += i}
=> 6
and if I create my own version of :+
a = lambda {|sum,i| sum += i}
puts [1,2,3].reduce(&a)
=> 6
My first thought is therefore that :+ references {|sum, i| sum += i} as an explicit block but I've had trouble finding information to confirm that.

The symbol you pass to reduce will be interpreted as a name of a method to call on each element. So this
collection.reduce(:foo)
is equivalent to this
collection.reduce { |memo, element| memo.foo(element) }
The reason it works with sums is that + operator is actually just a method on numbers.
1.+(3) # => 4
My first thought is therefore that :+ references {|sum, i| sum += i} as an explicit block
Not sure what you mean there, but :+ most certainly does not reference this block. Or any block. Or anything.
Symbols are just names. They don't point to anything. Deciding what they mean is up to the code that uses them.

A symbol is not a reference to variables, keys in hash tables, or as a way of sending blocks as you claim. The truth is that a symbol is used to describe these things as designed by the person who wrote the respective method that uses them, and actual mapping of a symbol to these things is done within the respective method.
For you particular example, :+ is not referencing {|sum, i| sum += i}, or any other block; it is a peculiarity of the alternative syntax of reduce that allows a symbol to be passed, and converts that symbol to a block. The corresponding block, though close to it, it not what you thought, but is: {|sum, i| sum + i}.

Related

I'm learning Ruby and I don't clearly understand what :* means in inject(:*) [duplicate]

This question already has answers here:
How does this ruby injection magic work?
(3 answers)
Closed 7 years ago.
I'm writing a method for calculating the factorial of a number and I found something similar to this in my search.
def factorial(number)
(1..number).inject(:*) || 1
end
It works and I understand what the inject function is doing, but I don't clearly understand what the (:\*) part really means.
I know it must be a shorthand version of writing {|num, prod| num*prod}, but I would love a clear explanation. Thanks!!
:* is simply the method name for * of the method for inject to execute. If you look at the documentation for inject http://ruby-doc.org/core-2.2.2/Enumerable.html#method-i-inject
It states that
If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.
So taken that inject { |memo, obj| block }
The following are equal
ary = [1,2,3]
ary.inject(:*)
#=> 6
ary.inject { |memo, obj| memo.*(obj) }
#=> 6
Short explanation
:* is a symbol. Symbols are immutable strings. :* is like "*" except it's immutable.
In ruby, multiplication is a method invocation too. It's equivalent invoking the .*(second) method of the first multiplier with the second multiplier as an argument. In fact, you can type 3.*(4) instead of 3*4. 3*4 is just syntactic sugar as far as ruby is concerned.
Method invocation in ruby can be invoked by public_sending symbol messages to objects. 3.public_send(:*, 4) will also work just like 3*4.
The argument to inject is interpreted as what type of message should be public_senT, that is, what method should be invoked from the internals of the inject method.
Longer explanation
You can think of
[ 1, 2, 3, 4 ].inject(:*)
as injecting '*' between each adjacent pair of each enumerable object that inject is invoked on:
[ 1, 2, 3, 4 ].inject(:*) == 1 * 2 * 3 * 4
Of course 1 * 2 * 3 * 4 is equivalent to going from left to right, and applying :* on your running tally and the next number to get your next tally, and then returning the final tally.
module Enumerable
def inject_asterisk
tally = first
rest = slice(1, length - 1)
rest.each do |next_num|
tally = tally * next_num
end
return tally
end
end
[2, 3, 5].inject_asterisk #=> 30
You can generalize this by making the operation that combines the tally and next_number to get your next tally an argument function. Blocks in ruby serve basically as argument functions that always have a reserved spot.
module Enumerable
def inject_block(&block)
tally = first
rest = slice(1, length - 1)
rest.each do |next_num|
tally = block.call(tally, next_num)
end
return tally
end
end
[2, 3, 5].inject_block {|tally, next_num| tally + next_num } #=> 10
If your block is always going to be of the form
{|tally, next_num| tally.method_of_tally(next_num) }
as it is in this case (remember tally + next_num <==> tally.+(next_num) <==> tally.public_send(:+,next_num), you can decide to only pass :method_of_tally as the argument and imply the block.
module Enumerable
def my_inject(method_of_tally_symbol, &block)
if method_of_tally_symbol
block = Proc.new { |tally, next_num|
tally.public_send(method_of_tally_symbol, next_num)
}
end
tally = first
rest = slice(1, length - 1)
rest.each do |next_num|
tally = block.call(tally, next_num)
end
return tally
end
end
[2, 3, 5].my_inject(:+) #=> 10
It's all about extracting repeated patterns into reusable components so that you don't have to type as much.
It means symbol to proc and it's a shortcut. Typically you would write something like
array.map { |e| e.join }
with symbol to proc, the shorthand would be
array.map(&:join)
inject and reduce are similar, but you don't need the & in those cases
For example, if you have an array of numbers called numbers
To sum the numbers, you could do
numbers.inject(&:+)
or you could leave off the ampersand
numbers.inject(:+)
http://ruby-doc.org/core-2.2.2/Enumerable.html#method-i-inject
Inject is a method on enumerable that combines the elements of said enumerable using a symbol (as in your case) or a block (as in your proposed longhand).
For example:
(5..10).reduce(:*) is equivalent to (5..10).inject { |prod, n| prod + n }

What is prefered way to loop in Ruby?

Why is each loop preferred over for loop in Ruby? Is there a difference in time complexity or are they just syntactically different?
Yes, these are two different ways of iterating over, But hope this calculation helps.
require 'benchmark'
a = Array( 1..100000000 )
sum = 0
Benchmark.realtime {
a.each { |x| sum += x }
}
This takes 5.866932 sec
a = Array( 1..100000000 )
sum = 0
Benchmark.realtime {
for x in a
sum += x
end
}
This takes 6.146521 sec.
Though its not a right way to do the benchmarking, there are some other constraints too. But on a single machine, each seems to be a bit faster than for.
The variable referencing an item in iteration is temporary and does not have significance outside of the iteration. It is better if it is hidden from outside of the iteration. With external iterators, such variable is located outside of the iteration block. In the following, e is useful only within do ... end, but is separated from the block, and written outside of it; it does not look easy to a programmer:
for e in [:foo, :bar] do
...
end
With internal iterators, the block variable is defined right inside the block, where it is used. It is easier to read:
[:foo, :bar].each do |e|
...
end
This visibility issue is not just for a programmer. With respect to visibility in the sense of scope, the variable for an external iterator is accessible outside of the iteration:
for e in [:foo] do; end
e # => :foo
whereas in internal iterator, a block variable is invisible from outside:
[:foo].each do |e|; end
e # => undefined local variable or method `e'
The latter is better from the point of view of encapsulation.
When you want to nest the loops, the order of variables would be somewhat backwards with external iterators:
for a in [[:foo, :bar]] do
for e in a do
...
end
end
but with internal iterators, the order is more straightforward:
[[:foo, :bar]].each do |a|
a.each do |e|
...
end
end
With external iterators, you can only use hard-coded Ruby syntax, and you also have to remember the matching between the keyword and the method that is internally called (for calls each), but for internal iterators, you can define your own, which gives flexibility.
each is the Ruby Way. Implements the Iterator Pattern that has decoupling benefits.
Check also this: "for" vs "each" in Ruby
An interesting question. There are several ways of looping in Ruby. I have noted that there is a design principle in Ruby, that when there are multiple ways of doing the same, there are usually subtle differences between them, and each case has its own unique use, its own problem that it solves. So in the end you end up needing to be able to write (and not just to read) all of them.
As for the question about for loop, this is similar to my earlier question whethe for loop is a trap.
Basically there are 2 main explicit ways of looping, one is by iterators (or, more generally, blocks), such as
[1, 2, 3].each { |e| puts e * 10 }
[1, 2, 3].map { |e| e * 10 )
# etc., see Array and Enumerable documentation for more iterator methods.
Connected to this way of iterating is the class Enumerator, which you should strive to understand.
The other way is Pascal-ish looping by while, until and for loops.
for y in [1, 2, 3]
puts y
end
x = 0
while x < 3
puts x; x += 1
end
# same for until loop
Like if and unless, while and until have their tail form, such as
a = 'alligator'
a.chop! until a.chars.last == 'g'
#=> 'allig'
The third very important way of looping is implicit looping, or looping by recursion. Ruby is extremely malleable, all classes are modifiable, hooks can be set up for various events, and this can be exploited to produce most unusual ways of looping. The possibilities are so endless that I don't even know where to start talking about them. Perhaps a good place is the blog by Yusuke Endoh, a well known artist working with Ruby code as his artistic material of choice.
To demonstrate what I mean, consider this loop
class Object
def method_missing sym
s = sym.to_s
if s.chars.last == 'g' then s else eval s.chop end
end
end
alligator
#=> "allig"
Aside of readability issues, the for loop iterates in the Ruby land whereas each does it from native code, so in principle each should be more efficient when iterating all elements in an array.
Loop with each:
arr.each {|x| puts x}
Loop with for:
for i in 0..arr.length
puts arr[i]
end
In the each case we are just passing a code block to a method implemented in the machine's native code (fast code), whereas in the for case, all code must be interpreted and run taking into account all the complexity of the Ruby language.
However for is more flexible and lets you iterate in more complex ways than each does, for example, iterating with a given step.
EDIT
I didn't come across that you can step over a range by using the step() method before calling each(), so the flexibility I claimed for the for loop is actually unjustified.

Ruby Array: Methodology to add numbers [duplicate]

This question already has answers here:
How to sum array of numbers in Ruby?
(16 answers)
Closed 10 years ago.
I'm trying to write code that will take an array and give back the SUM of the array.
First, is this the correct way to place the numbers into an array? It seems like there may be a problem with that based on the error.
def total(num)
x = []
x << num
puts x.inject(0){|a,b|a+b}
end
Looks like a have a few problems here. First, I get this error when I call the method with sum([3,2,41,2]):
`total': wrong number of arguments (5 for 1) (ArgumentError) from calculator.rb:11
I also recall getting a error: cant't covert fixnum into array
Your inject block is correct. Your argument error arises because you defined the method to take a single argument, but in your example, you call it with four arguments. If you want to use a variable number of arguments, you can use the splat operator *, which does various things- in this case, it will gather all undefined arguments into an array:
def total(*nums)
nums.inject(0) {|a,b| a + b }
end
total(3,2,41,2) #=> 48
You can further simplify this using a symbol with inject:
nums.inject(0, :+) #=> 48
This works by sending the method denoted by the symbol to the accumulator, using each member of the array as an argument (equivalent to defining the block as {|a, b| a.send(:+, b) }).
And actually in this case, you don't need to define an initial value. Inject has a third form that will simply use the first member of the array as the initial value and sum the others onto it:
nums.inject(:+)

Some simple Ruby questions - iterators, blocks, and symbols

My background is in PHP and C#, but I'd really like to learn RoR. To that end, I've started reading the official documentation. I have some questions about some code examples.
The first is with iterators:
class Array
def inject(n)
each { |value| n = yield(n, value) }
n
end
def sum
inject(0) { |n, value| n + value }
end
def product
inject(1) { |n, value| n * value }
end
end
I understand that yield means "execute the associated block here." What's throwing me is the |value| n = part of the each. The other blocks make more sense to me as they seem to mimic C# style lambdas:
public int sum(int n, int value)
{
return Inject((n, value) => n + value);
}
But the first example is confusing to me.
The other is with symbols. When would I want to use them? And why can't I do something like:
class Example
attr_reader #member
# more code
end
In the inject or reduce method, n represents an accumulated value; this means the result of every iteration is accumulated in the n variable. This could be, as is in your example, the sum or product of the elements in the array.
yield returns the result of the block, which is stored in n and used in the next iterations. This is what makes the result "cumulative."
a = [ 1, 2, 3 ]
a.sum # inject(0) { |n, v| n + v }
# n == 0; n = 0 + 1
# n == 1; n = 1 + 2
# n == 3; n = 3 + 3
=> 6
Also, to compute the sum you could also have written a.reduce :+. This works for any binary operation. If your method is named symbol, writing a.reduce :symbol is the same as writing a.reduce { |n, v| n.symbol v }.
attr and company are actually methods. Under the hood, they dynamically define the methods for you. It uses the symbol you passed to work out the names of the instance variable and the methods. :member results in the #member instance variable and the member and member = methods.
The reason you can't write attr_reader #member is because #member isn't an object in itself, nor can it be converted to a symbol; it actually tells ruby to fetch the value of the instance variable #member of the self object, which, at class scope, is the class itself.
To illustrate:
class Example
#member = :member
attr_accessor #member
end
e = Example.new
e.member = :value
e.member
=> :value
Remember that accessing unset instance variables yields nil, and since the attr method family accepts only symbols, you get: TypeError: nil is not a symbol.
Regarding Symbol usage, you can sort of use them like strings. They make excellent hash keys because equal symbols always refer to the same object, unlike strings.
:a.object_id == :a.object_id
=> true
'a'.object_id == 'a'.object_id
=> false
They're also commonly used to refer to method names, and can actually be converted to Procs, which can be passed to methods. This is what allows us to write things like array.map &:to_s.
Check out this article for more interpretations of the symbol.
For the definition of inject, you're basically setting up chained blocks. Specifically, the variable n in {|value| n = yield(n, value)} is essentially an accumulator for the block passed to inject. So, for example, for the definition of product, inject(1) {|value| n * value}, let's assume you have an array my_array = [1, 2, 3, 4]. When you call my_array.product, you start by calling inject with n = 1. each yields to the block defined in inject, which in turns yields to the block passed to inject itself with n (1) and the first value in the array (1 as well, in this case). This block, {|n, value| n * value} returns 1 == 1 * 1, which is set it inject's n variable. Next, 2 is yielded from each, and the block defined in inject block yields as yield(1, 2), which returns 2 and assigns it to n. Next 3 is yielded from each, the block yields the values (2, 3) and returns 6, which is stored in n for the next value, and so forth. Essentially, tracking the overall value agnostic of the calculation being performed in the specialised routines (sum and product) allows for generalization. Without that, you'd have to declare e.g.
def sum
n = 0
each {|val| n += val}
end
def product
n = 1
each {|val| n *= val}
end
which is annoyingly repetitive.
For your second question, attr_reader and its family are themselves methods that are defining the appropriate accessor routines using define_method internally, in a process called metaprogramming; they are not language statements, but just plain old methods. These functions expect to passed a symbol (or, perhaps, a string) that gives the name of the accessors you're creating. You could, in theory, use instance variables such as #member here, though it would be the value to which #member points that would be passed in and used in define_method. For an example of how these are implemented, this page shows some examples of attr_* methods.
def inject(accumulator)
each { |value| accumulator = yield(accumulator, value) }
accumulator
end
This is just yielding the current value of accumulator and the array item to inject's block and then storing the result back into accumulator again.
class Example
attr_reader #member
end
attr_reader is just a method whose argument is the name of the accessor you want to setup. So, in a contrived way you could do
class Example
#ivar_name = 'foo'
attr_reader #ivar_name
end
to create an getter method called foo
Your confusion with the first example may be due to your reading |value| n as a single expression, but it isn't.
This reformatted version might be clearer to you:
def inject(n)
each do |value|
n = yield(n, value)
end
return n
end
value is an element in the array, and it is yielded with n to whatever block is passed to inject, the result of which is set to n. If that's not clear, read up on the each method, which takes a block and yields each item in the array to it. Then it should be clearer how the accumulation works.
attr_reader is less weird when you consider that it is a method for generating accessor methods. It's not an accessor in itself. It doesn't need to deal with the #member variable's value, just its name. :member is just the interned version of the string 'member', which is the name of the variable.
You can think of symbols as lighter weight strings, with the additional bonus that every equal label is the same object - :foo.object_id == :foo.object_id, whereas 'foo'.object_id != 'foo'.object_id, because each 'foo' is a new object. You can try that for yourself in irb. Think of them as labels, or primitive strings. They're surprisingly useful and come up a lot, e.g. for metaprogramming or as keys in hashes. As pointed out elsewhere, calling object.send :foo is the same as calling object.foo
It's probably worth reading some early chapters from the 'pickaxe' book to learn some more ruby, it will help you understand and appreciate the extra stuff rails adds.
First you need to understand where to use symbols and where its not..
Symbol is especially used to represent something. Ex: :name, :age like that. Here we are not going to perform any operations using this.
String are used only for data processing. Ex: 'a = name'. Here I gonna use this variable 'a' further for other string operations in ruby.
Moreover, symbol is more memory efficient than strings and it is immutable. That's why ruby developer's prefers symbols than string.
You can even use inject method to calculate sum as (1..5).to_a.inject(:+)

What is the "right" way to iterate through an array in Ruby?

PHP, for all its warts, is pretty good on this count. There's no difference between an array and a hash (maybe I'm naive, but this seems obviously right to me), and to iterate through either you just do
foreach (array/hash as $key => $value)
In Ruby there are a bunch of ways to do this sort of thing:
array.length.times do |i|
end
array.each
array.each_index
for i in array
Hashes make more sense, since I just always use
hash.each do |key, value|
Why can't I do this for arrays? If I want to remember just one method, I guess I can use each_index (since it makes both the index and value available), but it's annoying to have to do array[index] instead of just value.
Oh right, I forgot about array.each_with_index. However, this one sucks because it goes |value, key| and hash.each goes |key, value|! Is this not insane?
This will iterate through all the elements:
array = [1, 2, 3, 4, 5, 6]
array.each { |x| puts x }
# Output:
1
2
3
4
5
6
This will iterate through all the elements giving you the value and the index:
array = ["A", "B", "C"]
array.each_with_index {|val, index| puts "#{val} => #{index}" }
# Output:
A => 0
B => 1
C => 2
I'm not quite sure from your question which one you are looking for.
I think there is no one right way. There are a lot of different ways to iterate, and each has its own niche.
each is sufficient for many usages, since I don't often care about the indexes.
each_ with _index acts like Hash#each - you get the value and the index.
each_index - just the indexes. I don't use this one often. Equivalent to "length.times".
map is another way to iterate, useful when you want to transform one array into another.
select is the iterator to use when you want to choose a subset.
inject is useful for generating sums or products, or collecting a single result.
It may seem like a lot to remember, but don't worry, you can get by without knowing all of them. But as you start to learn and use the different methods, your code will become cleaner and clearer, and you'll be on your way to Ruby mastery.
I'm not saying that Array -> |value,index| and Hash -> |key,value| is not insane (see Horace Loeb's comment), but I am saying that there is a sane way to expect this arrangement.
When I am dealing with arrays, I am focused on the elements in the array (not the index because the index is transitory). The method is each with index, i.e. each+index, or |each,index|, or |value,index|. This is also consistent with the index being viewed as an optional argument, e.g. |value| is equivalent to |value,index=nil| which is consistent with |value,index|.
When I am dealing with hashes, I am often more focused on the keys than the values, and I am usually dealing with keys and values in that order, either key => value or hash[key] = value.
If you want duck-typing, then either explicitly use a defined method as Brent Longborough showed, or an implicit method as maxhawkins showed.
Ruby is all about accommodating the language to suit the programmer, not about the programmer accommodating to suit the language. This is why there are so many ways. There are so many ways to think about something. In Ruby, you choose the closest and the rest of the code usually falls out extremely neatly and concisely.
As for the original question, "What is the “right” way to iterate through an array in Ruby?", well, I think the core way (i.e. without powerful syntactic sugar or object oriented power) is to do:
for index in 0 ... array.size
puts "array[#{index}] = #{array[index].inspect}"
end
But Ruby is all about powerful syntactic sugar and object oriented power, but anyway here is the equivalent for hashes, and the keys can be ordered or not:
for key in hash.keys.sort
puts "hash[#{key.inspect}] = #{hash[key].inspect}"
end
So, my answer is, "The “right” way to iterate through an array in Ruby depends on you (i.e. the programmer or the programming team) and the project.". The better Ruby programmer makes the better choice (of which syntactic power and/or which object oriented approach). The better Ruby programmer continues to look for more ways.
Now, I want to ask another question, "What is the “right” way to iterate through a Range in Ruby backwards?"! (This question is how I came to this page.)
It is nice to do (for the forwards):
(1..10).each{|i| puts "i=#{i}" }
but I don't like to do (for the backwards):
(1..10).to_a.reverse.each{|i| puts "i=#{i}" }
Well, I don't actually mind doing that too much, but when I am teaching going backwards, I want to show my students a nice symmetry (i.e. with minimal difference, e.g. only adding a reverse, or a step -1, but without modifying anything else).
You can do (for symmetry):
(a=*1..10).each{|i| puts "i=#{i}" }
and
(a=*1..10).reverse.each{|i| puts "i=#{i}" }
which I don't like much, but you can't do
(*1..10).each{|i| puts "i=#{i}" }
(*1..10).reverse.each{|i| puts "i=#{i}" }
#
(1..10).step(1){|i| puts "i=#{i}" }
(1..10).step(-1){|i| puts "i=#{i}" }
#
(1..10).each{|i| puts "i=#{i}" }
(10..1).each{|i| puts "i=#{i}" } # I don't want this though. It's dangerous
You could ultimately do
class Range
def each_reverse(&block)
self.to_a.reverse.each(&block)
end
end
but I want to teach pure Ruby rather than object oriented approaches (just yet). I would like to iterate backwards:
without creating an array (consider 0..1000000000)
working for any Range (e.g. Strings, not just Integers)
without using any extra object oriented power (i.e. no class modification)
I believe this is impossible without defining a pred method, which means modifying the Range class to use it. If you can do this please let me know, otherwise confirmation of impossibility would be appreciated though it would be disappointing. Perhaps Ruby 1.9 addresses this.
(Thanks for your time in reading this.)
Use each_with_index when you need both.
ary.each_with_index { |val, idx| # ...
The other answers are just fine, but I wanted to point out one other peripheral thing: Arrays are ordered, whereas Hashes are not in 1.8. (In Ruby 1.9, Hashes are ordered by insertion order of keys.) So it wouldn't make sense prior to 1.9 to iterate over a Hash in the same way/sequence as Arrays, which have always had a definite ordering. I don't know what the default order is for PHP associative arrays (apparently my google fu isn't strong enough to figure that out, either), but I don't know how you can consider regular PHP arrays and PHP associative arrays to be "the same" in this context, since the order for associative arrays seems undefined.
As such, the Ruby way seems more clear and intuitive to me. :)
Here are the four options listed in your question, arranged by freedom of control. You might want to use a different one depending on what you need.
Simply go through values:
array.each
Simply go through indices:
array.each_index
Go through indices + index variable:
for i in array
Control loop count + index variable:
array.length.times do | i |
Trying to do the same thing consistently with arrays and hashes might just be a code smell, but, at the risk of my being branded as a codorous half-monkey-patcher, if you're looking for consistent behaviour, would this do the trick?:
class Hash
def each_pairwise
self.each { | x, y |
yield [x, y]
}
end
end
class Array
def each_pairwise
self.each_with_index { | x, y |
yield [y, x]
}
end
end
["a","b","c"].each_pairwise { |x,y|
puts "#{x} => #{y}"
}
{"a" => "Aardvark","b" => "Bogle","c" => "Catastrophe"}.each_pairwise { |x,y|
puts "#{x} => #{y}"
}
I'd been trying to build a menu (in Camping and Markaby) using a hash.
Each item has 2 elements: a menu label and a URL, so a hash seemed right, but the '/' URL for 'Home' always appeared last (as you'd expect for a hash), so menu items appeared in the wrong order.
Using an array with each_slice does the job:
['Home', '/', 'Page two', 'two', 'Test', 'test'].each_slice(2) do|label,link|
li {a label, :href => link}
end
Adding extra values for each menu item (e.g. like a CSS ID name) just means increasing the slice value. So, like a hash but with groups consisting of any number of items. Perfect.
So this is just to say thanks for inadvertently hinting at a solution!
Obvious, but worth stating: I suggest checking if the length of the array is divisible by the slice value.
If you use the enumerable mixin (as Rails does) you can do something similar to the php snippet listed. Just use the each_slice method and flatten the hash.
require 'enumerator'
['a',1,'b',2].to_a.flatten.each_slice(2) {|x,y| puts "#{x} => #{y}" }
# is equivalent to...
{'a'=>1,'b'=>2}.to_a.flatten.each_slice(2) {|x,y| puts "#{x} => #{y}" }
Less monkey-patching required.
However, this does cause problems when you have a recursive array or a hash with array values. In ruby 1.9 this problem is solved with a parameter to the flatten method that specifies how deep to recurse.
# Ruby 1.8
[1,2,[1,2,3]].flatten
=> [1,2,1,2,3]
# Ruby 1.9
[1,2,[1,2,3]].flatten(0)
=> [1,2,[1,2,3]]
As for the question of whether this is a code smell, I'm not sure. Usually when I have to bend over backwards to iterate over something I step back and realize I'm attacking the problem wrong.
In Ruby 2.1, each_with_index method is removed.
Instead you can use each_index
Example:
a = [ "a", "b", "c" ]
a.each_index {|x| print x, " -- " }
produces:
0 -- 1 -- 2 --
The right way is the one you feel most comfortable with and which does what you want it to do. In programming there is rarely one 'correct' way to do things, more often there are multiple ways to choose.
If you are comfortable with certain way of doings things, do just it, unless it doesn't work - then it is time to find better way.
Using the same method for iterating through both arrays and hashes makes sense, for example to process nested hash-and-array structures often resulting from parsers, from reading JSON files etc..
One clever way that has not yet been mentioned is how it's done in the Ruby Facets library of standard library extensions. From here:
class Array
# Iterate over index and value. The intention of this
# method is to provide polymorphism with Hash.
#
def each_pair #:yield:
each_with_index {|e, i| yield(i,e) }
end
end
There is already Hash#each_pair, an alias of Hash#each. So after this patch, we also have Array#each_pair and can use it interchangeably to iterate through both Hashes and Arrays. This fixes the OP's observed insanity that Array#each_with_index has the block arguments reversed compared to Hash#each. Example usage:
my_array = ['Hello', 'World', '!']
my_array.each_pair { |key, value| pp "#{key}, #{value}" }
# result:
"0, Hello"
"1, World"
"2, !"
my_hash = { '0' => 'Hello', '1' => 'World', '2' => '!' }
my_hash.each_pair { |key, value| pp "#{key}, #{value}" }
# result:
"0, Hello"
"1, World"
"2, !"

Resources