<table>-like UI element for wxHaskell/wxWidgets - user-interface

I am working on writing a GUI in Haskell (and Ur/Web, but that is another story), and have several development branches using different libraries and approaches that I am working on contemporaneously. In trying to migrate some of the code I had from browser-backed UI libraries with HTML elements (threepenny-gui, to be precise) to native GUI applets using a WX graphical backend (wxHaskell, reactive-banana), I encountered some trouble figuring out how to migrate some code I had that was based on constructing a <table> element to an equivalent wxWidgets construct. It seemed to me that there was no easy way to implement such a thing on my own, and no native equivalent. I am looking for implementation suggestions, pointers to extant implementations, suitable alternatives, and so forth. I can provide more in-depth specifics of the design I am looking for, should that be required.
The html table is merely used for aligning and displaying data, where one cell in every row is a reactive control, and the number of rows displayed at any given time can also vary reactively.

HTML table can contain just about anything in its cells so it's too rich to be represented by any native control. It's really hard to make a recommendation without knowing what exactly you have in the table, but the different possibilities are:
wxHtmlWindow: this can be used to reuse your HTML provided it's simple enough (HTML4 basically) and you can embed native controls into it if needed.
wxGrid: this is the most flexible widget, but it's not native.
wxDataViewCtrl: this is native control under GTK and OS X (but not MSW where you'd need to use wxListCtrl for 100% native approach) but it's pretty limited compared to either of the above solutions.

Related

SAPUI5: Does Using Formatters Impact Performance?

I am working on custom SAPUI5 app using ODataModel and for which I have to do the formatting for some of the fields which I will be displaying in List control.
I need to know which approach is good mentioned below is good w.r.t. performance of app.
1) Is it a good idea to use Formatter.js file and write each method for each field for formatting?
Example -
There are 2 fields which should be formatted before showing in UI and hence 2 formatter function.
2) Before binding Model to List - Do the formatting using Loop at each row.
Example -
Loop at OData.
--do formatting here for both the fields
move data to model.
Endloop.
Bind new model to UI
Is there any other way by which we can improve performance - apart from code minification or using grunt.
Appreciate your help.
Thanks,
Rahul
Replacing Formatters with other solutions is definitely NOT the point to start when optimizing performance not to mention that you will loose a lot of the convenience the ODataModel comes with when manually manipulating the data in it.
Formatter Performance
Anyways using a formatter is of course less performant then pre-formatting your data once after they were loaded. A formatter will be executed on every rerendering of your control. So you might not want to do heavy calculations or excessive looping in a formatter that is executed frequently. But given a normal usage using formatters is absolutely nothing you should worry about or that does noticeably affect end-user experience. Keep enjoying the convenience of formatters (and take a look at the cool Expression Binding).
General Performance Considerations
To improve performance it is first of all very important to identify the real bottle neck. In many cases this is simply the backend, there is usually much more to win with much less effort. Always keep that in mind. UI Code optimization is ridiculous as long as the main backend call runs for say 3s.
Things to improve your UI performance might be:
serve SAPUI5 from a CDN
use a Component-preload, can be generated with grunt-openui5 or gulp-ui5-preload (I think it does not minify XML yet so you could do that additionaly before creating Component-preload)
try to reduce the number of SAPUI5 libraries you are using
be aware of which SAPUI5 libraries you are NOT using and very consequently remove those (don't forget the dependencies section in Component metadata resp. manifest.json)
be aware that sap.ui.layout is a separate independent library (not registering it as such will result in a lot of extra requests)
if you use an ODataModel make sure you set useBatch to true (default in v2.ODataModel)
intelligently design your OData service (if you can influence it)
intelligently use $expands: sometimes it can make sense to preload $expand data on a parent binding that does not actually use it e.g. if you most probably need the data later on
think about bundling your app as native app and benefit from improved caching (Kapsel)
Check Performance: Speed Up Your App and Performance Issues
squeeze out some more bytes and save some requests by minifying/combining custom css or other resources if you have some
If you are generally interested in Web Performance I can recommend Steve Souders books.
I'm totally open for more ideas on SAPUI5 performance improvements! Anyone?
BR
Chris
the best practice is to do it this way. The formatter allows you to receive an input and return output. The formatter function will be called in runtime and will be called for each of the rows which are displayed in your list. The reason that it will be called for each of the rows is because that you cannot grantee that the input will be the same for all of the rows in the list.
The concept of binding is to loop on your data model and update the UI accordingly. It is much better to use binding because a lot of reasons like: maintainability, performance, separate the data layer from the presentation layer, core optimizations and more.

What are your top 3 XPages performance tips for new XPages developers?

What 3 things would you tell developers new to XPages to do to help maximize the performance of their XPages apps?
Tim Tripcony had given a bunch of suggestion here.
http://www-10.lotus.com/ldd/xpagesforum.nsf/topicThread.xsp?action=openDocument&documentId=365493C31B0352E3852578FD001435D2#AEFBCF8B111E149B852578FD001E617B
Not sure if this tipp is for beginners, but use any of the LifeCyclePhaseListeners from the OpenNTF Snippets to see what is going on in your datasources during a complete or partial refresh (http://openntf.org/XSnippets.nsf/snippet.xsp?id=a-simple-lifecyclelistener-)
Use the extension Library. Report Bugs ( or what you consider a bug ) at OpenNTF.
Use the SampleDb from the extLib. ou can easily modify the samples to your own need. Even good for testing if the issue you encounter is reproducable in this DB.
Use Firebug ( or a similar tool that comes with the browser of your choice ) If you see an error in the error tab, go and fix it.
Since you're asking for only 3, here are the tips I feel make the biggest difference:
Determine what your users / customers mean by "performance", and set the page persistence option accordingly. If they mean scalability (max concurrent users), keep pages on disk. If they mean speed, keep pages in memory. If they want an ideal mixture of speed and scalability, keep the current page in memory. This latter option really should be the server default (set in the server's xsp.properties file), overridden only as needed per application.
Set value bindings to compute on page load (denoted by a $ in the source XML) wherever possible instead of compute dynamically (denoted by a #). $ bindings are only evaluated once, # bindings are recalculated over and over again, so changing computations that only need to be loaded once per page to $ bindings speed up both initial page load and any events fired against the page once loaded.
Minimize the use of SSJS. Wherever possible, use standard EL instead (e.g. ${database.title} instead of ${javascript:return database.getTitle();}). Every SSJS expression must be parsed into an abstract syntax tree to be evaluated, which is incrementally slower than the standard EL resolver.
There are many other ways to maximize performance, of course, but in my opinion these are the easiest ways to gain noticeable improvement.
1. Use the Script Library instead writing a bulk of code into the Xpage.
2. Use the Theme or separate CSS class for each elements [Relational]
3. Moreover try to control your SSJS code. Because server side request only reduce our system performance.
4. Final point consider this as sub point of 3, Try to get the direct functions from our SSJS, Don't use the while llop and for loop for like document collection, count and other things.
The basics like
Use the immediate flags ( or one of the other flags) on serverside events if possible
Check the Flag which (forgot its name..) generates the css and js as
one big file at runtime therefore minimizing the ammount of
requests.
Choose your scope wisely. Dont put everything in your sessionscope but define when, where and how your are using the data and based on that use the correct scope. This can lead to better memory usage..
And of course the most important one read the mastering xpages book.
Other tips I would add:
When retrieving data use viewentrycollections or the viewnavigstor
Upgrade to 8.5.3
Use default html tags if possible. If you dont need the functionality of a xp:div or xp:panel use a <div> instead so you dont generate an extra uicomponent on the tree.
Define what page persistance mode you need
Depends a lot what you mean by performance. For performance of the app:
Use compute on page load wherever feasible. It significantly improves performance.
In larger XPages particularly, combine code into single controls where possible. E.g. Use a single Computed Field control combining literal strings, EL and SSJS rather than one control for each language. On that point, EL performs better than SSJS, and SSJS on the XPage performs better than SSJS in a Script Library.
Use dataContexts for properties that are calculated more than once on an XPage.
Partial Execution mode is a very strong recommendation, but probably beyond new XPages developers at this point. Java will also perform better than SSJS in a Script Library, but again beyond new developers. XPages controls you've created with the Extensibility Framework should perform better, because they should run fewer lines of Java than multiple controls, but I haven't tested that.
If you mean performance of the developer:
Get the Extension Library.
Use themes to set default properties, e.g. A standard style for all your pagers.
Use Firebug. If you're developing for Notes Client or IE, still use Firebug. You'll spend longer suffering through Client/IE thank you will fixing the few quirks that will remain.

Generating UI from DB - the good, the bad and the ugly?

I've read a statement somewhere that generating UI automatically from DB layout (or business objects, or whatever other business layer) is a bad idea. I can also imagine a few good challenges that one would have to face in order to make something like this.
However I have not seen (nor could find) any examples of people attempting it. Thus I'm wondering - is it really that bad? It's definately not easy, but can it be done with any measure success? What are the major obstacles? It would be great to see some examples of successes and failures.
To clarify - with "generating UI automatically" I mean that the all forms with all their controls are generated completely automatically (at runtime or compile time), based perhaps on some hints in metadata on how the data should be represented. This is in contrast to designing forms by hand (as most people do).
Added: Found this somewhat related question
Added 2: OK, it seems that one way this can get pretty fair results is if enough presentation-related metadata is available. For this approach, how much would be "enough", and would it be any less work than designing the form manually? Does it also provide greater flexibility for future changes?
We had a project which would generate the database tables/stored proc as well as the UI from business classes. It was done in .NET and we used a lot of Custom Attributes on the classes and properties to make it behave how we wanted it to. It worked great though and if you manage to follow your design you can create customizations of your software really easily. We also did have a way of putting in "custom" user controls for some very exceptional cases.
All in all it worked out well for us. Unfortunately it is a sold banking product and there is no available source.
it's ok for something tiny where all you need is a utilitarian method to get the data in.
for anything resembling a real application though, it's a terrible idea. what makes for a good UI is the humanisation factor, the bits you tweak to ensure that this machine reacts well to a person's touch.
you just can't get that when your interface is generated mechanically.... well maybe with something approaching AI. :)
edit - to clarify: UI generated from code/db is fine as a starting point, it's just a rubbish end point.
hey this is not difficult to achieve at all and its not a bad idea at all. it all depends on your project needs. a lot of software products (mind you not projects but products) depend upon this model - so they dont have to rewrite their code / ui logic for different client needs. clients can customize their ui the way they want to using a designer form in the admin system
i have used xml for preserving meta data for this sort of stuff. some of the attributes which i saved for every field were:
friendlyname (label caption)
haspredefinedvalues (yes for drop
down list / multi check box list)
multiselect (if yes then check box
list, if no then drop down list)
datatype
maxlength
required
minvalue
maxvalue
regularexpression
enabled (to show or not to show)
sortkey (order on the web form)
regarding positioning - i did not care much and simply generate table tr td tags 1 below the other - however if you want to implement this as well, you can have 1 more attribute called CssClass where you can define ui specific properties (look and feel, positioning, etc) here
UPDATE: also note a lot of ecommerce products follow this kind of dynamic ui when you want to enter product information - as their clients can be selling everything under the sun from furniture to sex toys ;-) so instead of rewriting their code for every different industry they simply let their clients enter meta data for product attributes via an admin form :-)
i would also recommend you to look at Entity-attribute-value model - it has its own pros and cons but i feel it can be used quite well with your requirements.
In my Opinion there some things you should think about:
Does the customer need a function to customize his UI?
Are there a lot of different attributes or elements?
Is the effort of creating such an "rendering engine" worth it?
Okay, i think that its pretty obvious why you should think about these. It really depends on your project if that kind of model makes sense...
If you want to create some a lot of forms that can be customized at runtime then this model could be pretty uselful. Also, if you need to do a lot of smaller tools and you use this as some kind of "engine" then this effort could be worth it because you can save a lot of time.
With that kind of "rendering engine" you could automatically add error reportings, check the values or add other things that are always build up with the same pattern. But if you have too many of this things, elements or attributes then the performance can go down rapidly.
Another things that becomes interesting in bigger projects is, that changes that have to occur in each form just have to be made in the engine, not in each form. This could save A LOT of time if there is a bug in the finished application.
In our company we use a similar model for an interface generator between cash-software (right now i cant remember the right word for it...) and our application, just that it doesnt create an UI, but an output file for one of the applications.
We use XML to define the structure and how the values need to be converted and so on..
I would say that in most cases the data is not suitable for UI generation. That's why you almost always put a a layer of logic in between to interpret the DB information to the user. Another thing is that when you generate the UI from DB you will end up displaying the inner workings of the system, something that you normally don't want to do.
But it depends on where the DB came from. If it was created to exactly reflect what the users goals of the system is. If the users mental model of what the application should help them with is stored in the DB. Then it might just work. But then you have to start at the users end. If not I suggest you don't go that way.
Can you look on your problem from application architecture perspective? I see you as another database terrorist – trying to solve all by writing stored procedures. Why having UI at all? Try do it in DB script. In effect of such approach – on what composite system you will end up? When system serves different businesses – try modularization, selectively discovered components, restrict sharing references. UI shall be replaceable, independent from business layer. When storing so much data in DB – there is hard dependency of UI – system becomes monolith. How you implement MVVM pattern in scenario when UI is generated? Designers like Blend are containing lots of features, which cannot be replaced by most futuristic UI generator – unless – your development platform is Notepad only.
There is a hybrid approach where forms and all are described in a database to ensure consistency server side, which is then compiled to ensure efficiency client side on deploy.
A real-life example is the enterprise software MS Dynamics AX.
It has a 'Data' database and a 'Model' database.
The 'Model' stores forms, classes, jobs and every artefact the application needs to run.
Deploying the new software structure used to be to dump the model database and initiate a CIL compile (CIL for common intermediate language, something used by Microsoft in .net)
This way is suitable for enterprise-wide software and can handle large customizations. But keep in mind that this approach sets a framework that should be well understood by whoever gonna maintain and customize the application later.
I did this (in PHP / MySQL) to automatically generate sections of a CMS that I was building for a client. It worked OK my main problem was that the code that generates the forms became very opaque and difficult to understand therefore difficult to reuse and modify so I did not reuse it.
Note that the tables followed strict conventions such as naming, etc. which made it possible for the UI to expect particular columns and infer information about the naming of the columns and tables. There is a need for meta information to help the UI display the data.
Generally it can work however the thing is if your UI just mirrors the database then maybe there is lots of room to improve. A good UI should do much more than mirror a database, it should be built around human interaction patterns and preferences, not around the database structure.
So basically if you want to be cheap and do a quick-and-dirty interface which mirrors your DB then go for it. The main challenge would be to find good quality code that can do this or write it yourself.
From my perspective, it was always a problem to change edit forms when a very simple change was needed in a table structure.
I always had the feeling we have to spend too much time on rewriting the CRUD forms instead of developing the useful stuff, like processing / reporting / analyzing data, giving alerts for decisions etc...
For this reason, I made long time ago a code generator. So, it become easier to re-generate the forms with a simple restriction: to keep the CSS classes names. Simply like this!
UI was always based on a very "standard" code, controlled by a custom CSS.
Whenever I needed to change database structure, so update an edit form, I had to re-generate the code and redeploy.
One disadvantage I noticed was about the changes (customizations, improvements etc.) done on the previous generated code, which are lost when you re-generate it.
But anyway, the advantage of having a lot of work done by the code-generator was great!
I initially did it for the 2000s Microsoft ASP (Active Server Pages) & Microsoft SQL Server... so, when that technology was replaced by .NET, my code-generator become obsoleted.
I made something similar for PHP but I never finished it...
Anyway, from small experiments I found that generating code ON THE FLY can be way more helpful (and this approach does not exclude the SAVED generated code): no worries about changing database etc.
So, the next step was to create something that I am very proud to show here, and I think it is one nice resolution for the issue raised in this thread.
I would start with applicable use cases: https://data-seed.tech/usecases.php.
I worked to add details on how to use, but if something is still missing please let me know here!
You can change database structure, and with no line of code you can start edit data, and more like this, you have available an API for CRUD operations.
I am still a fan of the "code-generator" approach, and I think it is just a flavor of using XML/XSLT that I used for DATA-SEED. I plan to add code-generator functionalities.

The future of Naked Objects pattern (and UI auto-generation) [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
I ask about the pattern, not framework. This is kind of follow-up to a question on UI auto-generation.
Do you believe in the concept of UI auto-generation from metadata?
What kind of problems can be approached this way?
The question arose when I've created a small library to support my student projects, which generates interactive CLI in runtime based on object's metadata. And I think CLI it generates is quite decent.
On the other extreme is the Naked Objects Framework, which is rather universal, but UI it generates is horrible, IMO.
It's clear, every problem is specific and needs specific UI, but maybe there are several classes of problems where auto-generation is acceptable?
Yes, I believe the concept of metadata-based auto-generated applications is very sound - mainly because it drastically reduces development time and improves code quality by reducing the massive redundancy you have in most applications where each domain data field is represented in the database, in the model, in the UI, and often also several times in various mapping layers.
I think the future is auto-generated apps that can be modified wherever necessary. Currently, this is AFAIK not really possible; for example, Rails only allows you to fully customize the UI when you use static scaffolding, which basically means code generation, i.e. many further changes in the domain model are then not automatically represented in the UI because the duplication has happened when the code was generated.
I believe the first framework that manages to combine complete auto-generation with complete modifiability afterwards will become the de-facto development standard to a previously unknown degree. Though most likely we'll get there in small steps so that there will not be such a single dominating framework.
Take a look at JMatter, which is a rather better-looking implementation of Naked Objects.
http://www.jmatter.org
There is also Chris Muller's work on MAUI, and Lukas Renggli's work on Magritte (both Squeak /Smalltalk)
We have lots of generated UI in the configuration part of our apps. All those lists that are around forever and changed once in a blue moon by a system administrator.
I find that most applications with a database back-end tend to have a bad design from an OO and NO perspective, as already shown in the NO book by Pawson and Matthews.
Re: qn #1 ... Do you believe in the concept of UI auto-generation from metadata? ... I'm definitely going to answer 'yes' to your first question, being one of the committers to the Naked Objects (Java) framework and writing a book on DDD + NO.
The question mentions metadata. I think this is key to NO being able to succeed. In the latest version (which will be going beta in Feb) the metamodel has been opened up so that it is very extensible, either so you can write your domain model following your own programming conventions/annotations, or, potentially so that more sophisticated viewers can look for their own metadata to provide more sophisticated views. (For example, consider that if an object implemented a Location interface then it is displayed in a google maps).
Regarding qn #2 ... what kind of problems can be approached this way ... we've always said that NO is more suitable for "sovereign applications" (transactional, operational systems ones used internally within an organization) to "transient applications" (like an airport kiosk, say). An NO GUI does require that the user is familiar with the domain, otherwise they won't know what they are looking at.
What's missing still is sophisticated viewers, of course. You are right about the NO GUI, it is definitely low fidelity (though the .NET version is a big improvement, see recent infoq.com article). On the Java side there is a sister project called scimpi.org that has a lot of promise though... it provides a basic web GUI for free but lets you hand-craft web pages as necessary and incrementally. I'm also working on an Eclipse RCP GUI that'll work similarly.
The other thing to add to this though is that the NO approach has value (I believe) even if you choose to write a custom GUI and/or presentation layer. That is, you can use it as a design tool for building a very solid pojo domain layer, and then skin it as you will. Trouble is that NO was never originally sold in those terms, so most will see the NO pattern as an all-or-nothing affair.
Dan
One way to look at this is to consider the difference between the user interface you get from something like Toad or MySQL Browser, where the user interface is directly constructed from the tables and their associated meta data, and the user interface that a skilled designer would develop for the actual application. IF there not too disimilar then it should be fairly low hanging fruit for an auto-generation framework.
As you say there are classes of problems which will work quite well with this kind of auto generation and some which wouldn't. To my mind the key things are how well the implementation model (or portion thereof) which you are exposing in the user interface maps to the conceptual model of the user. Secondly how well can the behavior of the application can be expressed through a limited set of user interface components (assuming this is a general purpose UI generation framework).
This article "Universal Model of a User Interface" may be of interest .
I think the idea of automatically generated UIs has a lot of potential especially for your average form-and-table layout database user interface. However, even there a human needs to be in the loop, having the ability to override the output without it being overwritten with the next regeneration.
I suspect automatically generated UIs would be more successful today if interaction designers were more involved in developing the generation algorithms. My impression is that historically the creators of these systems don’t know what kinds of UI-related metadata to include or how to use it. Specifying labels, value ranges, formats, and orders for fields is a start, but more high level information is needed. Sufficient modeling of the tasks and user roles in particular tends to be lacking, along with some basic style-guide-level principles for UI.
Oracle’s Designer 2000, for example, was on the right track in including not only the entities and relations in the model, but also the tasks in the form of a functional hierarchy. Then they blew it by misapplying this metadata (e.g., assuming that depth is always preferred to breadth) and including fundamental flaws when generating the UI (e.g., only one primary window can be opened at a time). The result was IUs that were not even consistent with Oracle’s own Applications User Interface Standards.
Getting a basic UI up quickly that lets the customer try out the system and create test data must be of value. Naked Objects frameworks can help for the “boot strapping” even if you have to have replace it with “hand crafted” UI before you ship.
In most system I have worked on, there have been lots of simple housekeeping tables. All these tables need a UI to edit and view them etc. There is also great value in these simple editors being consistent. Here a naked Objects framework could save a lot of time, even if the main “day to day” UI is “hand crafted”
I have seen a couple of failed projects (cases where I was brought in as a rather expensive consultant to help architect the replacement) which used the "naked objects" approach (not the framework, AFAIK) - all with simply atrocious UIs, and worked replacing a lot of the UI on one project which, in its original incarnation, had a similar approach (the entire application was a tree of objects accessed through context menus and property sheets - this was NetBeans 2.0 circa 1998 - IDE as a giant hierarchical JavaBean).
The bottom line is, your users don't care about your architecture, they care about getting what they need to do done in the most comprehensible-to-mere-mortals set of interactions you can come up with. If that happens to align with your architecture, you are having a lucky day - but it really is serendipity. Trying to force users to care (or even know) about your architecture is a recipe for software nobody wants to use.
Code generally needs to be designed around two not-always-compatible goals:
Maintainability - people who didn't write the code can understand the code
Stability and performance - i.e. the activities the code asks the computer to physically do are both possible, and can be completed within a reasonable time frame
The abstractions and code structures that it makes sense to create to meet those two goals very, very rarely map exactly to user interface elements of any sort. Sometimes you can get away with it - barely - if your audience is technical. But even there, you are likely to please more users with at least a "presentation layer" adapter layer on top of the architecture that makes sense for programmers and machines.

How do multiple languages interact in one project?

I heard some people program in multiple languages in one project. I can't imagine how the languages interact with each other.
I mean there is no Java method like
myProgram.callCfunction(parameters);
never happens or am I wrong?
Having multiple languages in one project is actually quite common, however the principles behind are not always simple.
In the simple case, different languages are compiled to the same code. For example, C and C++ code typically is compiled into machine assembler or C# and VB.Net is compiled into IL (the language understood by the .NET runtime).
It gets more difficult if the languages/compilers use a differnt type system. There can be many different ways, basic data types such as integer, float and doubles are represented internally, and there is even more ways to represent strings. When passing types around between the different languages it must be sure that both sides interpret the type the same or - if not - the types are correctly mapped. This sort of type mapping is also known as marshalling.
Classic examples of interoperability between different program languages are (mostly from the Windows world):
The various languages available for the .NET platfrom. This includes C#, VB.Net, J#, IronRuby, F#, XSLT and many other less popular languages.
Native COM components written in C++ or VB can be used with a huge variety of languages: VBScript, VB, all .NET languages, Java
Win32 api functions can be called from .NET or VB
IPC (inter process communication)
Corba, probably the most comprehensive (and most complex) approach
Web services and other service-oriented architectures, probably the most modern approach
Generally, any decently sized web project will use about five languages: HTML, CSS, Javascript, some kind of server-side “getting things done” language (ASP, JSP, CGI scripts with Perl, PHP, etc.), and some variant of SQL for database connectivity.
(This is, of course, hand-waving away the argument about whether or not HTML and CSS count as programming languages – I’m the “they are, but just not Turing-complete languages” camp, but that’s a whole other thread.)
Some examples of how all those work together:
If you’re going the best-practices route, the structure of a web page is in HTML, and the instructions for how to display it are in CSS – which could be in the same file, but don’t have to be. The CSS contains a bunch of classes, which the HTML refers to, and it’s up to the browser to figure out how to click them together.
Taking all that a step further, any javascript scripts on that page can alter any of the HTML/CSS that is present (change contents of HTML entities, swap out one CSS class for another, change the behavior of the CSS, and so on.) It does this via something called the Document Object Model, which is essentially a language and platform-independent API to manipulate HTML pages in an object-like manner (at which point I’ll back away slowly and just provide a link to the relevant wiki article.)
But then, where does all the HTML / CSS / Javascript come from? That’s what the server-side language does. In the simplest form, the serer-side language is a program that returns a giant string holding an HTML page as its output. This, obviously, can get much more complex: HTML forms and query string parameters can be used as input for our server side program, and then you have the whole AJAX thing where the javascript gets to send data directly to the server language as well. You can also get fancy where the server language can customize the HTML, CSS, and Javascript that gets spit out – essentially, you have a program in one language writing a program in another language.
The Server-side language to SQL connection works much the same. There are a lot of ways to make it both more complex and safer, but the simplest way is for your server language to dynamically build a string with a SQL command in it, hand that to the database via some kind of connector, and get back a result set. (This is a case where you really do have a function that boils down to someValue = database.executeThisSQLCommand( SQLString ). )
So to wrap this up, different languages in this case either communicate by actually writing programs in each other, or by handing data around in very simple easy to parse formats that everybody can understand. (Strings, mainly.)
Multiple languages in use is called "interoperability" or "interop" for short.
Your example is wrong. Java can call C functions.
The language provides a mechanism for interoperability.
In the case of .NET, languages are compiled into IL as part of the CLI. Thus any .NET language can interop (call methods defined by) modules defined in any other .NET language.
As an example:
I can define a method in C#
static void Hello(){ Console.WriteLine("Hello World");}
And I can call it from Python (IronPython)
Hello()
And get the expected output.
Generally speaking, some languages interop better than others, especially if the language authors specifically made interop a feature of the language.
Multiple languages can interact with:
Piped input/output (ANY language can do this
because input and output must by necessity be implemented in every non-toy
language)
Having code in one language compile to a native library
while the other supports calling native code.
Communicating over a loopback network connection. You can
run into difficulties with firewall interference this way.
Databases. These can be thought of as a "universal" data
storage format, and hence can be accessed by most languages
with database extensions. This generally
requires one program to finish operation before the next program
can access the database. In addition, all 'communications' are
generally written to disk.
If the languages involved run on the same runtime (i.e. .NET,
JVM), then you generally can pass object data from one language
directly to the other with little impedence.
In almost every case, you have to convert any communication to a common
format before it can be exchanged (the exception is languages on the
same runtime). This is why multiple languages are rarely used in one
project.
I work on a large enterprise project which is comprised of (at the last count) about 8 languages. The majority of the communication is via an enterprise level message bus which contains bindings for multiple languages to tap into and pass data back and forth. It's called tibco.
There are many different ways you can use different languages in one project
There are two main categories that come to mind:
Using Different languages together to build one application. For example using Java to build the GUI and using JNI to access C API (so answering your question you can call C functions from Java ;))
Using different languages together in the one project if they are not part of the same application. For example. I am currently working on an iPhone app that has uses a large amount of text. I am currently using three languages: Python (to work with the original sources of the text), SQL (to put the results of the python app in a format easily accessible from the iPhone sqlite3 API) and Objective C to build the actual app. Even though the final product will only be Objective C, I've used two other languages to get to the final product.
You could have an app where the bulk of the work is done in Java, but there might be some portion of it, like maybe a data parser or something is written in Python or what have you. Almost two separate apps really, perhaps the parser is just doing some work on files and then your main app in Java is using them for something. If someone were to ask me what I used in this project I'd say "Java and Python."
There are various ways that multiple languages can be used in one project. Some examples:
You can write a DLL in, say, C, and then use that library from, say, a VB program.
You could write a server program in, say C++, and have lots of different language implementations of the client.
A web project often uses lots of languages; for example a server program, written in, say, Java (a programming language), which fetches data from a database using SQL (a query language), sends the result to the browser in HTML (a markup language), which the user can interact with using Javascript (a scripting language)...
Badly. If there is no urgent need, stick to a single language. You're increasing dependencies and complexity. But when you have existing code providing interesting functionality, it can be easier to glue it together than to recreate it.
It depends on the type of project. If you want to experiment, you can set up a web project, in .NET, and change the language on a page by page basis. It does not work as you show in your pseudocode, but it is multiple languages. Of course, the actual code directory must be a single language.
There are a couple of ways in which code in languages can interact directly. As long as the data being passed between the code is in the right format, at the bits and bytes level, then there is no reason why different languages can't interop. This approach is used in traditional windows DLL development. Even on different platforms, if you can get the format correct (look at big/little endian if interested) it will work as long as your linker (not compiler) knows how to join code together.
Beyond that there are numerous other ways in which languages can talk to each other. In the .Net world code is compiled down to IL code, which is the same for every language, in this way C#, VB.Net are all the same under the hood and can call/work with each other seamlessly.
Just to add to the list of examples, it's fairly common to optimize Python code in C or C++ or write a C library to bind another library to Python.

Resources