How to add user specified values from a hash - ruby

I'm trying to create a program that would take a string from user input and return the 'value' of the word where a=1, b=2, c=3 etc. i.e. "cab" = 6.
Unfortunately I can't figure out how to break down the user input variable and have it added together:
print "Give us a word to calculate: "
word = gets.chomp
alphabet = Hash[
"a" => 1, "b" => 2, "c" => 3,
"d" => 4, "e" => 5, "f" => 6,
"g" => 7, "h" => 8, "i" => 9,
"j" => 10, "k" => 11, "l" => 12,
"m" => 13, "n" => 14, "o" => 15,
"p" => 16, "q" => 17, "r" => 18,
"s" => 19, "t" => 20, "u" => 21,
"v" => 22, "w" => 23, "x" => 24,
"y" => 25, "z" => 26
]
value = word.split("")
puts "Your word, \'#{word}\' has a value of: #{value}"

You can use reduce method to add up the values of each char.
value = word.split("")
sum = value.reduce(0) {|sum, char| alphabet[char] + sum }
puts "Your word, \'#{word}\' has a value of: #{sum}"
#=> Your word, 'cab' has a value of: 6
Here we use reduce (which has an alias method inject) to reduce the array into a single value. We start with initial value of 0, and iterate through each element of the array - in the block, we add the numeric equivalent of given char to the sum so far - and eventually end up with sum of all numeric values.
Answer to question in comments:
My only relevant follow-up question to this, is it possible to define
the hash using ranges? I know that I can define them with ("a".."z")
and (1..26) but I didn't know if there is a way to set those two
ranges equal to one another based on their index values or somesuch
You can make use of Array#zip method that allows to merge two arrays by pairing elements at same index as sub-arrays. Subsequently, we can take advantage of method Array#to_h which converts any array of 2-element arrays into hash.
alphabet = ('a'..'z').zip(1..26).to_h

I'd suggest the following as a good Ruby-way:
base = 'a'.ord-1
"catsup".each_char.map { |c| c.ord - base }.reduce(:+)
#=> 80
Breaking it down:
d = 'a'.ord
#=> 97
base = d-1
#=> 96
e = "catsup".each_char.map { |c| c.ord - base }
#=> [3, 1, 20, 19, 21, 16]
e.reduce(:+)
#=> 80
Let's look more carefully at the calculation of e:
enum0 = "catsup".each_char
#=> #<Enumerator: "catsup":each_char>
Note:
enum0.map { |c| c.ord - base }
#=> [3, 1, 20, 19, 21, 16]
To see the elements of the enumerator enum0, which will be passed to map, convert it to an array:
enum0.to_a
#=> ["c", "a", "t", "s", "u", "p"]
Now lets write:
enum1 = enum0.map
#=> #<Enumerator: #<Enumerator: "catsup":each_char>:map>
Study the return value. You can think of enum1 as a "compound" enumerator.
enum1.to_a
#=> ["c", "a", "t", "s", "u", "p"]
enum1.each { |c| c.ord - base }
#=> [3, 1, 20, 19, 21, 16]
We can now use Enumerator#next to extract each element of enum, set the block variable c to that value and perform the block calculation:
c = enum1.next #=> "c"
c.ord - base #=> 99-96 = 3
c = enum1.next #=> "a"
c.ord - base #=> 1
c = enum1.next #=> "t"
c.ord - base #=> 20
c = enum1.next #=> "s"
c.ord - base #=> 19
c = enum1.next #=> "u"
c.ord - base #=> 21
c = enum1.next #=> "p"
c.ord - base #=> 16
c = enum1.next #=> StopIteration: iteration reached an end

Related

Sort hash by key which is a string

Assuming I get back a string:
"27,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,12,17,17,41,17,17,17,17,17,17,17,17,17,17,17,17,17,26,26,26,26,26,26,26,26,26,29,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,40,48,28,28,28,28,28,28,28,28,28,28,28,28,28,28,29,29,29,29,29,29,29,29,29,29,29,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,34,34,34,34,34,34,36,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,40,40,40,40,40,40,40,40,41,41,41,41,41,41,41,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,43,43,43,43,43,43,43,43,43,43,43,43,43,44,44,44,44,48,49,29,41,6,30,11,29,29,36,29,29,36,29,43,1,29,29,29,1,41"
I turn that into an array by calling
str.split(',')
Then turning it into a hash by calling
arr.compact.inject(Hash.new(0)) { |h, e| h[e] += 1 ; h }
I would get back a hash that looks like
{"1"=>2, "6"=>1, "39"=>23, "36"=>23, "34"=>39, "32"=>31, "30"=>18, "3"=>8, "2"=>10, "28"=>36, "29"=>21, "26"=>41, "27"=>48, "49"=>1, "44"=>4, "43"=>14, "42"=>34, "48"=>2, "40"=>9, "41"=>10, "11"=>1, "17"=>15, "12"=>1}
However, I'd like to sort that hash by key.
I've tried the solutions listed here.
I believe my problem is related to the fact they keys are strings.
The closest I got was using
Hash[h.sort_by{|k,v| k.to_i}]
Hashes shouldn't be treated as a sorted data structure. They have other advantages and use case as to return their values sequentially. As Mladen Jablanović already pointed out a array of tuples might be the better data structure when you need a sorted key/value pair.
But in current versions of Ruby there actually exists a certain order in which key/value pairs are returned when you call for example each on a hash and that is the order of insertion. Using this behavior you can just build a new hash and insert all key/value pairs into that new hash in the order you want them to be. But keep in mind that the order will break when you add more entries later on.
string = "27,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,12,17,17,41,17,17,17,17,17,17,17,17,17,17,17,17,17,26,26,26,26,26,26,26,26,26,29,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,40,48,28,28,28,28,28,28,28,28,28,28,28,28,28,28,29,29,29,29,29,29,29,29,29,29,29,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,34,34,34,34,34,34,36,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,40,40,40,40,40,40,40,40,41,41,41,41,41,41,41,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,43,43,43,43,43,43,43,43,43,43,43,43,43,44,44,44,44,48,49,29,41,6,30,11,29,29,36,29,29,36,29,43,1,29,29,29,1,41"
sorted_number_count_tupels = string.split(',').
group_by(&:itself).
map { |k, v| [k, v.size] }.
sort_by { |(k, v)| k.to_i }
#=> [["1",2],["2",10],["3",8],["6",1],["11",1],["12",1],["17",15],["26",41],["27",48],["28",36],["29",21],["30",18],["32",31],["34",39],["36",23],["39",23],["40",9],["41",10],["42",34],["43",14],["44",4],["48",2],["49",1]]
sorted_number_count_hash = sorted_number_count_tupels.to_h
#=> { "1" => 2, "2" => 10, "3" => 8, "6" => 1, "11" => 1, "12" => 1, "17" => 15, "26" => 41, "27" => 48, "28" => 36, "29" => 21, "30" => 18, "32" => 31, "34" => 39, "36" => 23, "39" => 23, "40" => 9, "41" => 10, "42" => 34, "43" => 14, "44" => 4, "48" => 2, "49" => 1}
Suppose you started with
str = "27,2,2,2,41,26,26,26,48,48,41,6,11,1,41"
and created the following hash
h = str.split(',').inject(Hash.new(0)) { |h, e| h[e] += 1 ; h }
#=> {"27"=>1, "2"=>3, "41"=>3, "26"=>3, "48"=>2, "6"=>1, "11"=>1, "1"=>1}
I removed compact because the array str.split(',') contains only (possibly empty) strings, no nils.
Before continuing, you may want to change this last step to
h = str.split(/\s*,\s*/).each_with_object(Hash.new(0)) { |e,h| h[e] += 1 }
#=> {"27"=>1, "2"=>3, "41"=>3, "26"=>3, "48"=>2, "6"=>1, "11"=>1, "1"=>1}
Splitting on the regex allows for the possibility of one or more spaces before or after each comma, and Enumerable#each_with_object avoids the need for that pesky ; h. (Notice the block variables are reversed.)
Then
h.sort_by { |k,_| k.to_i }.to_h
#=> {"1"=>1, "2"=>3, "6"=>1, "11"=>1, "26"=>3, "27"=>1, "41"=>3, "48"=>2}
creates a new hash that contains h's key-value pairs sorted by the integer representations of the keys. See Hash#sort_by.
Notice we've created two hashes. Here's a way to do that by modifying h in place.
h.keys.sort_by(&:to_i).each { |k| h[k] = h.delete(k) }
#=> ["1", "2", "6", "11", "26", "27", "41", "48"] (each always returns the receiver)
h #=> {"1"=>1, "2"=>3, "6"=>1, "11"=>1, "26"=>3, "27"=>1, "41"=>3, "48"=>2}
Lastly, another alternative is to sort str.split(',') before creating the hash.
str.split(',').sort_by(&:to_i).each_with_object(Hash.new(0)) { |e,h| h[e] += 1 }
#=> {"1"=>1, "2"=>3, "6"=>1, "11"=>1, "26"=>3, "27"=>1, "41"=>3, "48"=>2}
Notes
compact
String#split cannot return a nil element. compact won't be useful, here. split might return an empty string, though :
p "1,,2,3".split(',')
# ["1", "", "2", "3"]
p "1,,2,3".split(',').compact
# ["1", "", "2", "3"]
p "1,,2,3".split(',').reject(&:empty?)
# ["1", "2", "3"]
inject
If you have to use two statements inside inject block, each_with_object might be a better idea :
arr.compact.inject(Hash.new(0)) { |h, e| h[e] += 1 ; h }
can be rewritten :
arr.compact.each_with_object(Hash.new(0)) { |e, h| h[e] += 1 }
Hash or Array?
If you need to sort results, an Array of pairs might be more suitable than a Hash.
String or Integer?
If you accept to have an integer as key, it might make your code easier to write.
Refactoring
Here's a possibility to rewrite your code :
str.split(',')
.reject(&:empty?)
.map(&:to_i)
.group_by(&:itself)
.map { |k, v| [k, v.size] }
.sort
It outputs :
[[1, 2], [2, 10], [3, 8], [6, 1], [11, 1], [12, 1], [17, 15], [26, 41], [27, 48], [28, 36], [29, 21], [30, 18], [32, 31], [34, 39], [36, 23], [39, 23], [40, 9], [41, 10], [42, 34], [43, 14], [44, 4], [48, 2], [49, 1]]
If you really want a Hash, you can add .to_h :
{1=>2, 2=>10, 3=>8, 6=>1, 11=>1, 12=>1, 17=>15, 26=>41, 27=>48, 28=>36, 29=>21, 30=>18, 32=>31, 34=>39, 36=>23, 39=>23, 40=>9, 41=>10, 42=>34, 43=>14, 44=>4, 48=>2, 49=>1}
You can assign the arr.compact.inject(Hash.new(0)) { |h, e| h[e] += 1 ; h } to a variable and sort it by key:
num = arr.compact.inject(Hash.new(0)) { |h, e| h[e] += 1 ; h }
num.keys.sort
That would sort the hash by key.
A Ruby hash will keep the order of keys added. If the array is small enough to sort I would just change
str.split(',').
to
str.split(',').sort_by(&:to_i)
in order to get the values, and therefore also you hash sorted...

Ruby: How to find the most frequent substring of length n? [duplicate]

I have this program with a class DNA. The program counts the most frequent k-mer in a string. So, it is looking for the most common substring in a string with a length of k.
An example would be creating a dna1 object with a string of AACCAATCCG. The count k-mer method will look for a subtring with a length of k and output the most common answer. So, if we set k = 1 then 'A' and 'C' will be the most occurrence in the string because it appears four times. See example below:
dna1 = DNA.new('AACCAATCCG')
=> AACCAATCCG
>> dna1.count_kmer(1)
=> [#<Set: {"A", "C"}>, 4]
>> dna1.count_kmer(2)
=> [#<Set: {"AA", "CC"}>, 2]
Here is my DNA class :
class DNA
def initialize (nucleotide)
#nucleotide = nucleotide
end
def length
#nucleotide.length
end
protected
attr_reader :nucleotide
end
Here is my count kmer method that I am trying to implement:
# I have k as my only parameter because I want to pass the nucleotide string in the method
def count_kmer(k)
# I created an array as it seems like a good way to split up the nucleotide string.
counts = []
#this tries to count how many kmers of length k there are
num_kmers = self.nucleotide.length- k + 1
#this should try and look over the kmer start positions
for i in num_kmers
#Slice the string, so that way we can get the kmer
kmer = self.nucleotide.split('')
end
#add kmer if its not present
if !kmer = counts
counts[kmer] = 0
#increment the count for kmer
counts[kmer] +=1
end
#return the final count
return counts
end
#end dna class
end
I'm not sure where my method went wrong.
Something like this?
require 'set'
def count_kmer(k)
max_kmers = kmers(k)
.each_with_object(Hash.new(0)) { |value, count| count[value] += 1 }
.group_by { |_,v| v }
.max
[Set.new(max_kmers[1].map { |e| e[0] }), max_kmers[0]]
end
def kmers(k)
nucleotide.chars.each_cons(k).map(&:join)
end
EDIT: Here's the full text of the class:
require 'set'
class DNA
def initialize (nucleotide)
#nucleotide = nucleotide
end
def length
#nucleotide.length
end
def count_kmer(k)
max_kmers = kmers(k)
.each_with_object(Hash.new(0)) { |value, count| count[value] += 1 }
.group_by { |_,v| v }
.max
[Set.new(max_kmers[1].map { |e| e[0] }), max_kmers[0]]
end
def kmers(k)
nucleotide.chars.each_cons(k).map(&:join)
end
protected
attr_reader :nucleotide
end
This produces the following output, using Ruby 2.2.1, using the class and method you specified:
>> dna1 = DNA.new('AACCAATCCG')
=> #<DNA:0x007fe15205bc30 #nucleotide="AACCAATCCG">
>> dna1.count_kmer(1)
=> [#<Set: {"A", "C"}>, 4]
>> dna1.count_kmer(2)
=> [#<Set: {"AA", "CC"}>, 2]
As a bonus, you can also do:
>> dna1.kmers(2)
=> ["AA", "AC", "CC", "CA", "AA", "AT", "TC", "CC", "CG"]
Code
def most_frequent_substrings(str, k)
(0..str.size-k).each_with_object({}) do |i,h|
b = []
str[i..-1].scan(Regexp.new str[i,k]) { b << Regexp.last_match.begin(0) + i }
(h[b.size] ||= []) << b
end.max_by(&:first).last.each_with_object({}) { |a,h| h[str[a.first,k]] = a }
end
Example
str = "ABBABABBABCATSABBABB"
most_frequent_substrings(str, 4)
#=> {"ABBA"=>[0, 5, 14], "BBAB"=>[1, 6, 15]}
This shows that the most frequently-occurring 4-character substring of strappears 3 times. There are two such substrings: "ABBA" and "BBAB". "ABBA" begins at offsets (into str) 0, 5 and 14, "BBAB" substrings begin at offsets 1, 6 and 15.
Explanation
For the example above the steps are as follows.
k = 4
n = str.size - k
#=> 20 - 4 => 16
e = (0..n).each_with_object([])
#<Enumerator: 0..16:each_with_object([])>
We can see the values that will be generated by this enumerator by converting it to an array.
e.to_a
#=> [[0, []], [1, []], [2, []], [3, []], [4, []], [5, []], [6, []], [7, []], [8, []],
# [9, []], [10, []], [11, []], [12, []], [13, []], [14, []], [15, []], [16, []]]
Note the empty array contained in each element will be modified as the array is built. Continuing, the first element of e is passed to the block and the block variables are assigned using parallel assignment:
i,a = e.next
#=> [0, []]
i #=> 0
a #=> []
We are now considering the substring of size 4 that begins at str offset i #=> 0, which is seen to be "ABBA". Now the block calculation is performed.
b = []
r = Regexp.new str[i,k]
#=> Regexp.new str[0,4]
#=> Regexp.new "ABBA"
#=> /ABAB/
str[i..-1].scan(r) { b << Regexp.last_match.begin(0) + i }
#=> "ABBABABBABCATSABBABB".scan(r) { b << Regexp.last_match.begin(0) + i }
b #=> [0, 5, 14]
We next have
(h[b.size] ||= []) << b
which becomes
(h[b.size] = h[b.size] || []) << b
#=> (h[3] = h[3] || []) << [0, 5, 14]
Since h has no key 3, h[3] on the right side equals nil. Continuing,
#=> (h[3] = nil || []) << [0, 5, 14]
#=> (h[3] = []) << [0, 5, 14]
h #=> { 3=>[[0, 5, 14]] }
Notice that we throw away scan's return value. All we need is b
This tells us the "ABBA" appears thrice in str, beginning at offsets 0, 5 and 14.
Now observe
e.to_a
#=> [[0, [[0, 5, 14]]], [1, [[0, 5, 14]]], [2, [[0, 5, 14]]],
# ...
# [16, [[0, 5, 14]]]]
After all elements of e have been passed to the block, the block returns
h #=> {3=>[[0, 5, 14], [1, 6, 15]],
# 1=>[[2], [3], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]],
# 2=>[[4, 16], [5, 14], [6, 15]]}
Consider substrings that appear just once: h[1]. One of those is [2]. This pertains to the 4-character substring beginning at str offset 2:
str[2,4]
#=> "BABA"
That is found to be the only instance of that substring. Similarly, among the substrings that appear twice is str[4,4] = str[16,4] #=> "BABB", given by h[2][0] #=> [4, 16].
Next we determine the greatest frequency of a substring of length 4:
c = h.max_by(&:first)
#=> [3, [[0, 5, 14], [1, 6, 15]]]
(which could also be written c = h.max_by { |k,_| k }).
d = c.last
#=> [[0, 5, 14], [1, 6, 15]]
For convenience, convert d to a hash:
d.each_with_object({}) { |a,h| h[str[a.first,k]] = a }
#=> {"ABBA"=>[0, 5, 14], "BBAB"=>[1, 6, 15]}
and return that hash from the method.
There is one detail that deserves mention. It is possible that d will contain two or more arrays that reference the same substring, in which case the value of the associated key (the substring) will equal the last of those arrays. Here's a simple example.
str = "AAA"
k = 2
In this case the array d above will equal
d = [[0], [1]]
Both of these reference str[0,2] #=> str[1,2] #=> "AA". In building the hash the first is overwritten by the second:
d.each_with_object({}) { |a,h| h[str[a.first,k]] = a }
#=> {"AA"=>[1]}

Roman Numerals in Ruby

In a coding challenge I recently attempted, I found this as an alternative solution to converting numbers to Roman numerals. I don't really understand how this code works. I just figured out what divmod does but else, I am very confused.
class Integer
def to_roman
roman_arr = {
1000 => "M",
900 => "CM",
500 => "D",
400 => "CD",
100 => "C",
90 => "XC",
50 => "L",
40 => "XL",
10 => "X",
9 => "IX",
5 => "V",
4 => "IV",
1 => "I"
}
num = self
roman_arr.reduce("") do |res, (arab, roman)|
whole_part, num = num.divmod(arab)
res << roman * whole_part
end
end
end
reduce / fold is the functional programming equivalent to the looping constructs found in imperative languages. ruby is capable of both.
foo.reduce("") { |a, i| a + i } is equivalent to
a = ""
foo.each {|i| a = a + i}
a
the num = self line saves the instance (the number which receives the to_roman method) in a local variable so you can use it in the block that you pass to reduce.
I added some explanations to the code, hope it is clear now.
You would never write it like this though, the code you published is fine.
class Integer
def to_roman_explained
roman_arr = {
1000 => "M",
900 => "CM",
500 => "D",
400 => "CD",
100 => "C",
90 => "XC",
50 => "L",
40 => "XL",
10 => "X",
9 => "IX",
5 => "V",
4 => "IV",
1 => "I"
}
remaining = self # the integer on which this method is called
empty_string = "" # startvalue of result
return_value = roman_arr.inject(empty_string) do |result, (arab, roman)|
# inject = reduce, for each element of our hash
# arab and roman are the key and value part of the hash elements, result is result from previous iteration
p [result, arab, roman,remaining.divmod(arab)] # lets's see what happens
# number of times the remaining can be divided with the value of this roman, the remaining becomes the rest
whole_part, remaining = remaining.divmod(arab)
result << roman * whole_part # if whole_part == 0 nothing happens for this roman
end
return return_value
end
end
puts 555.to_roman_explained
# gives
# ["", 1000, "M", [0, 555]]
# ["", 900, "CM", [0, 555]]
# ["", 500, "D", [1, 55]] first time the integer is dividable by the value of the roman
# ["D", 400, "CD", [0, 55]] our result now has the roman D
# ["D", 100, "C", [0, 55]]
# ["D", 90, "XC", [0, 55]]
# ["D", 50, "L", [1, 5]] etc
# ["DL", 40, "XL", [0, 5]]
# ["DL", 10, "X", [0, 5]]
# ["DL", 9, "IX", [0, 5]]
# ["DL", 5, "V", [1, 0]] etc
# ["DLV", 4, "IV", [0, 0]]
# ["DLV", 1, "I", [0, 0]]
# DLV
I found its easier if reversing the number beforehand, like:
def new_roman(arabic_number)
symbols = {0=>["I","V"],1=>["X","L"],2=>["C","D"],3=>["M"]}
reversed_digits = arabic_number.to_s.split(//).reverse
romans =[]
reversed_digits.length.times do |i|
if reversed_digits[i].to_i< 4
romans<<(symbols[i][0]*reversed_digits[i].to_i)
elsif reversed_digits[i].to_i == 4
romans<<(symbols[i][0]+ symbols[i][1])
elsif reversed_digits[i].to_i == 9
romans<<(symbols[i][0] + symbols[i+1][0])
else
romans<<(symbols[i][1] + (symbols[i][0]*((reversed_digits[i].to_i)-5)))
end
end
romans.reverse.join("")
end

what does [0..1] mean in Module.constants() method?

In the following code
Module.constants[0..1] # => [:object, :Module]
What does the [0..1] mean here?
0..1 is a range. It's syntactic sugar for the Ruby parser to create a Range object. You can do a lot with ranges, including simple iteration:
irb(main):003:0> (1..3).class
=> Range
irb(main):004:0> (1..3).each {|x| puts x}
1
2
3
=> 1..3
You can turn it into an Array, among other things:
irb(main):005:0> (1..3).to_a
=> [1, 2, 3]
When you use a Range as an Array#[] argument, it means you want all the elements whose index is in that range (inclusive):
irb(main):007:0> stuff = %w{a b c d e f}
=> ["a", "b", "c", "d", "e", "f"]
irb(main):008:0> range = 2..4
=> 2..4
irb(main):009:0> stuff[range]
=> ["c", "d", "e"]
Module.constants returns an array of all the constants defined in (i.e. namespaced to) the Module class (yes, Module is a class; see Module.class). The [0..1] says give me every element of the array from the 0th to the 1st. In general, if x is an array, then x[m..n] returns the subarray of x consisting of the elements from the mth to the nth. For example:
x = [36, 25, 16, 9, 4]
x[1..3] # => [25, 16, 9]

How to return a part of an array in Ruby?

With a list in Python I can return a part of it using the following code:
foo = [1,2,3,4,5,6]
bar = [10,20,30,40,50,60]
half = len(foo) / 2
foobar = foo[:half] + bar[half:]
Since Ruby does everything in arrays I wonder if there is something similar to that.
Yes, Ruby has very similar array-slicing syntax to Python. Here is the ri documentation for the array index method:
--------------------------------------------------------------- Array#[]
array[index] -> obj or nil
array[start, length] -> an_array or nil
array[range] -> an_array or nil
array.slice(index) -> obj or nil
array.slice(start, length) -> an_array or nil
array.slice(range) -> an_array or nil
------------------------------------------------------------------------
Element Reference---Returns the element at index, or returns a
subarray starting at start and continuing for length elements, or
returns a subarray specified by range. Negative indices count
backward from the end of the array (-1 is the last element).
Returns nil if the index (or starting index) are out of range.
a = [ "a", "b", "c", "d", "e" ]
a[2] + a[0] + a[1] #=> "cab"
a[6] #=> nil
a[1, 2] #=> [ "b", "c" ]
a[1..3] #=> [ "b", "c", "d" ]
a[4..7] #=> [ "e" ]
a[6..10] #=> nil
a[-3, 3] #=> [ "c", "d", "e" ]
# special cases
a[5] #=> nil
a[6, 1] #=> nil
a[5, 1] #=> []
a[5..10] #=> []
If you want to split/cut the array on an index i,
arr = arr.drop(i)
> arr = [1,2,3,4,5]
=> [1, 2, 3, 4, 5]
> arr.drop(2)
=> [3, 4, 5]
You can use slice() for this:
>> foo = [1,2,3,4,5,6]
=> [1, 2, 3, 4, 5, 6]
>> bar = [10,20,30,40,50,60]
=> [10, 20, 30, 40, 50, 60]
>> half = foo.length / 2
=> 3
>> foobar = foo.slice(0, half) + bar.slice(half, foo.length)
=> [1, 2, 3, 40, 50, 60]
By the way, to the best of my knowledge, Python "lists" are just efficiently implemented dynamically growing arrays. Insertion at the beginning is in O(n), insertion at the end is amortized O(1), random access is O(1).
Ruby 2.6 Beginless/Endless Ranges
(..1)
# or
(...1)
(1..)
# or
(1...)
[1,2,3,4,5,6][..3]
=> [1, 2, 3, 4]
[1,2,3,4,5,6][...3]
=> [1, 2, 3]
ROLES = %w[superadmin manager admin contact user]
ROLES[ROLES.index('admin')..]
=> ["admin", "contact", "user"]
another way is to use the range method
foo = [1,2,3,4,5,6]
bar = [10,20,30,40,50,60]
a = foo[0...3]
b = bar[3...6]
print a + b
=> [1, 2, 3, 40, 50 , 60]
I like ranges for this:
def first_half(list)
list[0...(list.length / 2)]
end
def last_half(list)
list[(list.length / 2)..list.length]
end
However, be very careful about whether the endpoint is included in your range. This becomes critical on an odd-length list where you need to choose where you're going to break the middle. Otherwise you'll end up double-counting the middle element.
The above example will consistently put the middle element in the last half.

Resources