Related
I am interested in writing a syntax checker for a language. Basically what I want to do is make a cli tool that will take an input file, and then write errors that it finds. The language I would want to parse is basically similar to Turing, and it is rather ugly and sometimes a pain to work with. The only other syntax checker for it must be used
What language should I use? I figured I would write it in Ruby, but Python may be faster or have better parsing libraries.
What libraries should I use, in Ruby or Pearl? Which would be easier.
Is there a primer to read for defining a grammar? Such a task can become confusing, and I'm not sure how I would handle it.
If it were me, I would write it in Ruby, and worry about speed later. If the program is a runaway hit, I might add a native gem to speed up the slowest bit, but leave most of it in Ruby. If it becomes the most important program in the world, or if I had nothing else to do, I might rewrite it in C or C++ at that point, but not before.
And I would do all parsing using Treetop.
I might add that writing and optimizing a language parser directly in C is an interesting learning experience. You get roughly no string handling help, so you end up doing all the parsing, but you have a chance to do only the minimum amount of processing. It's sort of the opposite of the Ruby experience. To get maximum speed you end up doing things like writing frond-ends for malloc, where multiple objects you know you never have to free get allocated permanently within a malloced block. Although it is typical to use yacc(1) with C/C++, you can certainly write a recursive-descent parser and have an even deeper learning experience.
Of course, having done all that already, I'm happy to stick with Ruby these days.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
I don't know if I'm the only person in the world which gets a bad feeling in my stomach if my code isn't "pretty". For example if I get a assignment that another person has been doing before me. I can't help it to clean the code and make it look "pretty". I don't know if it's some kind of OCD.
It's like I see the code as some kind of art that has be perfect in my own code convention to look good. I don't know if you understand what I'm trying to explain here.
But are you like me, trying always to make my code look good in a aesthetical point of view even though it won't make the code better?
Yes, I care about code aesthetics.. Code that is aestheticly pleasing is easy to read and therefore easy to understand.
No, I stopped trying anymore. You can't defeat an army of code monkeys.
Only with my personal project I'm aspired to make it perfect.
I think Robert Martin described it best in his Book Clean Code:A Handbook of Agile
Software Craftsmanship
It’s not enough to write the code
well. The code has to be kept clean
over time. We’ve all seen code rot and
degrade as time passes. So we must
take an active role in preventing this
degradation.
The Boy Scouts of America have a
simple rule that we can apply to our
profession.
Leave the campground cleaner than you
found it.
If we all checked-in our code a little
cleaner than when we checked it out,
the code simply could not rot. The
cleanup doesn’t have to be something
big. Change one variable name for the
better, break up one function that’s a
little too large, eliminate one small
bit of duplication, clean up one
composite if statement.
Can you
imagine working on a project where the
code simply got better as time passed?
Do you believe that any other option
is professional? Indeed, isn’t
continuous improvement an intrinsic
part of professionalism?
If you mean identation, I think it is essential.
If you mean readable (which for me is different from aesthetically pretty), it is also essential.
If you want what's written to look like flowers and birds flying, then no. I'm not concerned. :P
I hate that my collegues always write one letter variables, short named methods that start with underscores and generally ugly code. It seems to be the standard practice around these parts.
I always make my code look good. It's a visual representation of who I am, so I have to maintain it nice and neat, and properly indented.
I'm not so much concerned with whether or not it looks nice as much as with how readable it is. It just so happens that "prettier" code is usually easier to read and maintain.
Formatting code is one way (and possibly the most bang for your buck way at that) to make your code readable. Being confronted with readable code makes stepping through your program easier (whether in a debugger or code review). The same goes for sensible variable names and thinking about variable scope.
If, however, you're spending all of your time changing some perfectly acceptable notation for fields, locals, pointers etc. into some very personal Ancide-notation, then I'd be inclined to say that isn't really necessary.
I too find myself in such a position. Since clean code is easy to read and maintain, I always try to clean up and style my code.
I do that as well. I find that making the code look good makes it easier to read and understand.
Yes, I like to make the code look better, because it makes easier to maintain and it looks like people are concerned on making a good system.
When the code looks ugly, you don't feel yourself motivated to keep it cool.
And I feel i'm so concerned that i think my co-workers hate me =P
I make very good use of the build-in code formatter within Visual Studio. In Delphi, I even use an add-in that allows me to format my Delphi code. I also try to keep each source file below the 1000 lines of code, although I'm not worried if some files are becoming longer. I use descriptive variable names and occasionally add some additional comments when I suspect that the code (and names for fields, classes and parameters) isn't clear enough for the next one reading my code.
The result is very rewarding since I once had to maintain a piece of code that I wrote 5 years earlier. It's readability made my own pieces of code in the project still very readable. Others have been more careless, though. It gave me an easy trick to recognize my own code from the garbage that was added by some inexperienced semi-programmer/manager who was only capable of writing macro's in Word and Excel...
"Pretty" and "code aesthetics" are sort of proxy words - those terms sound trivial, but (at least to me) really mean "clearly and logically expressed ideas". Clearly and Logically expressed ideas matter.
Tidy code is more maintainable. Your brain is able to do amazing automated pattern matching on code, so you will often find that you spot bugs and problems in code just because it is the wrong "shape". I find tidiness so important I wrote a VS addin (AtomineerUtils) for adding and formatting doc comments to minimise the work I need to go to in order to keep my code tidy.
Of course, that's no reason to reformat someone else's code - you'll only upset other programmers if you change their code to your style for aesthetic reasons, not to mention you're spending a lot of time that could be put into new code, and every line of code you change is another potential bug that needs to be re-tested. So try to stop yourself going "too far".
I wouldn't go so far as to make things look aesthetically good purely for the aesthetic value, but I do think it's really important to write code that's readable and easily understood at a glance. Especially when writing things like XML/HTML, things like proper nesting and indentation can really make it easy to quickly get a sense of the structure and allow you to spend your time zeroing in on the areas that you care about. A short, well-organized method that's easy to read visually will save time and energy vs. something that takes ten minutes to understand.
Yeah, I have to have the code indented with spaces and tab 4 spaces wide and if it is C/C++/Java code put curly brace in its own line, Emacs macros do the rest :-)
Yes, I do. And because "you can't [indeed] fight an army of monkey" (if I may borrow this from one answer), I tend to try making this less painful and to automate what can be automated, e.g. performing cosmetic checks during the build (that will break if necessary). Another option would be to format code automatically on commit but I prefer the first one.
PS: I'm using Jalopy and Maven for this when doing Java.
Define "aesthetics." I think it means different things to different people.
The absolute most important thing to me about any code that I write (despite hasty code samples posted here) is that it works as intended. Once it works as intended, then, and only then, do I worry about the aesthetics.
Aesthetics are subjective. I may spend labor to make my code a work of art in my eyes, and someone else may come behind me and labor to change it to conform to their sense of what constitutes "beautiful code." After all, do you include design patterns, coding standards, naming conventions, and who-knows-what-else in that? Or is it a simple matter of indentation, curly brace alignment, type-alignment in variable declaration, and so forth?
No two developers will completely agree on what constitutes aesthetically pleasing code. That's not to say that you shouldn't strive to create it; but it should not be your number one priority. Writing working, maintainable code should be your number one priority. If it happens to be aesthetically pleasing as a result of that, so be it.
So your the guy making merging a complete nightmare? Undoing all the formatting that is aesthetically pleasing to me, the writer and primary maintainer of that code you just checked in?
Yes, I am shamelessly trying to acquire StackOverflow karma with silly questions.
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I am a hobbyist programmer (started with VBA to make excel quicker) and have been working with VB.NET / C#.NET and am trying to learn ADO.NET.
A facet of programming that has always frustrated me is what does 'good' look like? I am not a professional so have little to compare against. What makes a better programmer?
Is it:
They have a better understanding of
all the objects / classes / methods
in a given language?
Their programs are more efficient?
The design of their programs are much
better in terms of better
documentation, good choice of names
for functions etc.?
Put another way, if I were to look at the code of a professional programmer, what is the first thing that I would notice about their code relative to mine? For example, I read books like 'Professional ASP.NET' by Wrox press. Are the code examples in that book 'world class'? Is that the pinnacle? Would any top-gun programmer look at that code and think it was good code?
The list below is not comprehensive, but these are the things that I thought of in considering your question.
Good code is well-organized. Data and operations in classes fit together. There aren't extraneous dependencies between classes. It does not look like "spaghetti."
Good code comments explain why things are done not what is done. The code itself explains what is done. The need for comments should be minimal.
Good code uses meaningful naming conventions for all but the most transient of objects. the name of something is informative about when and how to use the object.
Good code is well-tested. Tests serve as an executable specification of the code and examples of its use.
Good code is not "clever". It does things in straightforward, obvious ways.
Good code is developed in small, easy to read units of computation. These units are reused throughout the code.
I haven't read it yet, but the book I'm planning to read on this topic is Clean Code by Robert C. Martin.
The first thing you'd notice is that their code follows a consistent coding-style. They always write their structure blocks the same, indent religiously and comment where appropriate.
The second things you'd notice is that their code is segmented into small methods / functions spanning no more than a couple dozen lines at the most. They also use self describing method names and generally their code is very readable.
The third thing you'd notice, after you messed around with the code a little is that the logic is easy to follow, easy to modify - and therefore easily maintainable.
After that, you'll need some knowledge and experience in software design techniques to understand the specific choices they took constructing their code architecture.
Regarding books, I haven't seen many books where the code could be considered "world-class". In books they try mostly to present simple examples, which might be relevant to solving very simple problems but aren't reflective of more complex situations.
Quoting Fowler, summizing readability:
Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.
'nough said.
Personally, I'll have to quote "The Zen of Python" by Tim Peters. It tells Python programmers what their code should look like, but I find that it applies to basically all code.
Beautiful is better than ugly. Explicit is better than
implicit. Simple is better than complex. Complex is better
than complicated. Flat is better than nested. Sparse is
better than dense. Readability counts. Special cases
aren't special enough to break the rules. Although practicality
beats purity. Errors should never pass silently. Unless
explicitly silenced. In the face of ambiguity, refuse the
temptation to guess. There should be one-- and preferably only
one --obvious way to do it. Although that way may not be obvious
at first unless you're Dutch. Now is better than never.
Although never is often better than right now. If the
implementation is hard to explain, it's a bad idea. If the
implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
Code is poetry.
Start from this point of logic and you can derive many of the desirable qualities of code. Most importantly, observe that code is read far more than it is written, hence write code for the reader. Rewrite, rename, edit, and refactor for the reader.
A follow on corollary:
The reader will be you at time n from the code creation date. The payoff of writing code for the reader is a monotonically increasing function of n. A reader looking at your code for the first time is indicated by n == infinity.
In other words, the larger the gap of time from when you wrote the code to when you revisit the code, the more you will appreciate your efforts to write for the reader. Also, anyone you hand your code off to will gain great benefit from code written with the reader as the foremost consideration.
A second corollary:
Code written without consideration for the reader can be unnecessarily difficult to understand or use. When the consideration for the reader drops below a certain threshold, the reader derives less value from the code than the value gained by rewriting the code. When this occurs the previous code is thrown away and, tragically, much work is repeated during the rewrite.
A third corollary:
Corollary two has been known to repeat itself multiple times in a vicious cycle of poorly documented code followed by forced rewrites.
I've been programming for 28 years and I find this a tough question to answer. To me good code is a complete package. The code is cleanly written, with meaningful variable and method names. It has well placed comments that comment the intent of the code and doesn't just regurgitate the code you can already read. The code does what it is supposed to in an efficient manner, without wasting resources. It also has to be written with an eye towards maintainability.
The bottom line though is that it means different things to different people. What I might label as good code someone else might hate. Good code will have some common traits which I think I've identified above.
The best thing you can do is expose yourself to code. Look at other people's code. Open Source projects are a good source for that. You will find good code and bad code. The more you look at it, the better you will recognize what you determine to be good code and bad code.
Ultimately you will be your own judge. When you find styles and techniques you like adopt them, over time you will come up with your own style and that will change over time. There is no person on here that can wave a wand and say what is good and that anything else is bad.
Read the book Code Complete. This explains a lot of ideas about how to structure code and the the reasons for doing so. Reading it should short-circuit your time to aquiring the experience necessary to tell good from bad.
http://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1229267173&sr=8-1
Having been programming for nearly 10 years now myself and having worked with others I can say without bias that there is no difference between a good programmer and an average programmers code
All programmers at a competent level:
Comment Correctly
Structure Efficiently
Document Cleanly
I once overheard a co-worker say "I've always been very logical and rational minded. I think that's why I enjoy developing"
That in my opinion, is the mind of an average programmer. One who sees the world in terms of rules and logic and ultimately obeys those rules when designing and writing a program.
The expert programmer, understands the rules, but also their context. This ultimately leads to them coming up with new ideas and implementations, the mark of an expert programmer. Programming is ultimately an art form.
Succinctly put, a good programmer's code can be read and understood.
In my opinion, a good programmer's code is language-agnostic; well-written code can be read and understood in a short amount of time with minimal thinking, regardless of the programming language used. Whether the code is in Java, Python, C++ or Haskell, well-written code is understandable by people who don't even program in that particular language.
Some characteristics of code that is easy to read are, methods that are well-named, absence of "tricks" and convoluted "optimization", classes are well-designed, to name a few. As others have mentioned, coding style is consistent, succinct and straight-forward.
For example, the other day, I was taking a look at the code for TinyMCE to answer one of the questions on Stack Overflow. It is written in JavaScript, a language that I've hardly used. Yet, because of the coding style and the comments that are included, along with the structuring of the code itself, it was fairly understandable, and I was able to navigate through the code in a few minutes.
One book that was quite an eye-opener for me in the regard of reading good programmer's code is Beautiful Code. It has many articles written by authors of various programming projects in various programming languages. Yet, when I read it, I could understand what the author was writing in his code despite the fact that I've never even programmed in that particular language.
Perhaps what we should keep in mind is that programming is also about communication, not only to the computer but to people, so good programmer's code is almost like a well-written book, which can communicate to the reader about the ideas it wants to convey.
Easy to read
easy to write
easy to maintain
everything else is filigree
Good code should be easily understood.
It should be well commented.
Difficult parts should be even better commented.
Good code is readable. You'd have no trouble understanding what the code is doing on the first read through of code written by a good professional programmer.
Rather then repeat everyone else's great suggestions, I will instead suggest that you read the book Code Complete by Steve McConnell
Essentially it is a book packed full of programming best practices for both functionality and style.
[Purely subjective answer]
For me, good code is a form of art, just like a painting. I might go further and say that it's actually a drawing that includes characters, colors, "form" or "structure" of code, and with all this being so readable/performant. The combination of readability, structure (i.e. columns, indentation, even variable names of the same length!), color (class names, variable names, comments, etc.) all make what I like to see as a "beautiful" picture that can make me either very proud or very detestful of my own code.
(As said before, very subjective answer. Sorry for my English.)
I second the recommendation of Bob Martin's "Clean Code".
"Beautiful Code" was highly acclaimed a couple of years ago.
Any of McConnell's books are worth reading.
Perhaps "The Pragmatic Programmer" would be helpful, too.
%
Just wanted to add my 2 cents... comments in your code -- and your code itself, generally -- should say what your code does, now how it does it. Once you have the concept of 'client' code, which is code that calls other code (simplest example is code that calls a method), you should always be most worried about making your code comprehensible from the "client's" perspective. As your code grows, you'll see that this is... uh, good.
A lot of the other stuff about good code is about the mental leaps that you'll make (definitely, if you pay attention)... 99% of them have to do with doing a bit more work now to spare you a ton of work later, and reusability. And also with doing things right: I almost always want to run the other way rather than using regular expressions, but every time I get into them, I see why everybody uses them in every single language I work in (they're abstruse, but work and probably couldn't be better).
Regarding whether to look at books, I would say definitely not in my experience. Look at APIs and frameworks and code conventions and other people's code and use your own instincts, and try to understand why stuff is the way it is and what the implications of things are. The thing that code in books almost never does is plan for the unplanned, which is what error checking is all about. This only pays off when somebody sends you an email and says, "I got error 321" instead of "hey, the app is broke, yo."
Good code is written with the future in mind, both from the programmer's perspective and the user's perspective.
This is answered pretty well in Fowler's book, "Refactoring", It's the absence of all the "smells" he describes throughout the book.
I haven't seen 'Professional ASP.NET', but I'd be surprised if it's better than OK. See this question for some books with really good code. (It varies, of course, but the accepted answer there is hard to beat.)
This seems to be (should be) a FAQ. There is an ACM article about beautiful code recently. There seems to be a lot of emphasis on easy to read/understand. I'd qualifier this with "easy to read/understand by domain experts". Really good programmers tend to use the best algorithms (instead of naive easy to understand O(n^2) algorithms) for any given problems, which could be hard to follow, if you're not familiar with the algorithm, even if the good programmer gives a reference to the algorithm.
Nobody is perfect including good programmers but their code tend to strive for:
Correctness and efficiency with proven algorithms (instead of naive and adhoc hacks)
Clarity (comment for intent with reference to non-trivial algorithms)
Completeness to cover the basics (coding convention, versioning, documentation, unit tests etc.)
Succinctness (DRY)
Robustness (resilient to arbitrary input and disruption of change requests)
i second the recommendation for uncle bob's "clean code". but you may wish to take a look at http://www.amazon.com/Implementation-Patterns-Addison-Wesley-Signature-Kent/dp/0321413091 as i think this deals with your specific question a bit better. good code should leap off the page and tell you what it does/how it works.
Jeff Atwood wrote a nice article about how coders are Typists first reference:
http://www.codinghorror.com/blog/archives/001188.html
When being a typist you always need to be elegant in your work, having strucutre and proper "grammar" is highly important. Now converting this to "programming"-typing would catch the same outcome.
Structure
Comments
Regions
I'm a software engineere which means during my education i've come across many different languages but my programming always "feel" the same, as my writing does on fekberg.wordpress.com, i have a "special" way for typing.
Now programming different applications and in different languages, such as Java, C#, Assembler, C++,C i've come to the "standard" of writing that i like.
I see everything as "boxes" or regions and each region has it's explaining commenting. A region might be "class Person" and inside this Region i have a couple of methods for properties, which i may call "Access Methods" or such and each property and region has it's own explaining commenting.
This is highly important, i always see my code that i do, as "being a part of an api", when creating an API structure and elegance is VERY important.
Think about this. Also read my paper on Communication issues when adapting outsourcing which explains in rough, how bad code can conflict, Enterpret as you like: http://fekberg.wordpress.com/2008/12/14/communication-issues-when-adapting-outsourcing/
Good code is easy to understand, easy to maintain, and easy to add to. Ideally, it is also as efficient as possible without sacrificing other indicators.
Great code to me is something that is simple to grasp yet sophisticated. The things that make you go, "wow, of course, why didn't I think of it that way?". Really good code is not hard to understand, it simply solves the problem at hand in a straight-forward way (or a recursive way, if that is even simpler).
Good code is where you know what the method does from the name. Bad code is where you have to work out what the code does, to make sense of the name.
Good code is where if you read it, you can understand what it's doing in not much more time than it takes to read it. Bad code is where you end up looking at it for ages trying to work out wtf it does.
Good code has things named in such a way as to make trivial comments unnecessary.
Good code tends to be short.
Good code can be reused to do what it does anywhere else, since it doesn't rely on stuff that is really unrelated to its purpose.
Good code is usually a set of simple tools to do simple jobs (put together in well organised ways to do more sophisticated jobs). Bad code tends to be huge multi-purpose tools that are easy to break and difficult to use.
Code is a reflection of a programmer's skills and mindset. Good programmers always have an eye on the future - how the code will function when requirements or circumstances are not exactly what they are today. How scalabale it will be? How convenient it will be when I am not the one maintaining this code? How reusable the code will be, so that someone else doing similar stuff can reuse the code and not write it again. What when someone else is trying to understand the code that I have written.
When a programmer has that mindset, all the other stuff falls in place nicely.
Note: A code base is worked on by many programmers over time and typically there is not a specific designation of code base to a programmer. Hence good code is a reflection of all the company's standards and quality of their workforce.
(I use "he" below because this is the person that I aspire to be, sometimes with success).
I believe that the core of a good programmer's philosophy is that he is always thinking "I am coding for myself in the future when I will have forgotten all about this task, why I was working on it, what were the risks and even how this code was supposed to work."
As such, his code has to:
Work (it doesn't matter how fast code gets to the wrong answer. There's no partial credit in the real world).
Explain how he knows that this code works. This is a combination of documentation (javadoc is my tool of choice), exception handling and test code. In a very real sense, I believe that, line for line, test code is more valuable than functional code if for no other reason than it explains "this code works, this is how it should be used, and this is why I should get paid."
Be maintained. Dead code is a nightmare. Legacy code maintenance is a chore but it has to be done (and remember, it's "legacy" the moment that it leaves your desk).
On the other hand, I believe that the good programmer should never do these things:
Obsess over formatting. There are plenty of IDEs, editors and pretty-printers that can format code to exactly the standard or personal preference that you feel is appropriate. I use Netbeans, I set up the format options once and hit alt-shift-F every now and then. Decide how you want the code to look, set up your environment and let the tool do the grunt work.
Obsess over naming conventions at the expense of human communication. If a naming convention is leading you down the road of naming your classes "IElephantProviderSupportAbstractManagerSupport" rather than "Zookeeper", change the standard before you make it harder for the next person.
Forget that he works as a team with actual human beings.
Forget that the primary source of coding errors is sitting at his keyboard right now. If there's a mistake or an error, he should look to himself first.
Forget that what goes around comes around. Any work that he does now to make his code more accessible to future readers will almost certainly benefit him directly (because who's going to be the first person asked to look at his code? He is).
It works
It has unit tests that prove that it works
The rest is icing...
The best code has a certain elegance that you recognise as soon as you see it.
It looks crafted, with care and attention to detail. It's obviously produced with someone with skill and has an art about it - you could say it looks sculpted and polished, rather than rough and ready.
It's consistent and reads easily.
It's split into small, highly cohesive functions each of which do one thing and do it well.
It's minimally coupled, meaning that dependencies are few and strictly controlled,
usually by...
Functions and classes have dependencies on abstractions rather than implementations.
Ironically the better the programmer the less indispensable he/she becomes because the code produced is better maintainable by anyone (as stated by general consent by Eran Galperin).
My experience tells the opposite is also true. The worse the programmer the more difficult to maintain his/her code is, so more indispensable he/she becomes, since no other soul can understand the riddles produced.
I have a good example :
Read GWT (google web tookit) Source code, you will see that every fool understand it (some english books are harder to read than this code).
Back in college, only the use of pseudo code was evangelized more than OOP in my curriculum. Just like commenting (and other preached 'best practices'), I found that in crunch time psuedocode was often neglected. So my question is...who actually uses it a lot of the time? Or do you only use it when an algorithm is really hard to conceptualize entirely in your head? I'm interested in responses from everyone: wet-behind-the-ears junior developers to grizzled vets who were around back in the punch card days.
As for me personally, I mostly only use it for the difficult stuff.
I use it all the time. Any time I have to explain a design decision, I'll use it. Talking to non-technical staff, I'll use it. It has application not only for programming, but for explaining how anything is done.
Working with a team on multiple platforms (Java front-end with a COBOL backend, in this case) it's much easier to explain how a bit of code works using pseudocode than it is to show real code.
During design stage, pseudocode is especially useful because it helps you see the solution and whether or not it's feasible. I've seen some designs that looked very elegant, only to try to implement them and realize I couldn't even generate pseudocode. Turned out, the designer had never tried thinking about a theoretical implementation. Had he tried to write up some pseudocode representing his solution, I never would have had to waste 2 weeks trying to figure out why I couldn't get it to work.
I use pseudocode when away from a computer and only have paper and pen. It doesn't make much sense to worry about syntax for code that won't compile (can't compile paper).
I almost always use it nowadays when creating any non-trivial routines. I create the pseudo code as comments, and continue to expand it until I get to the point that I can just write the equivalent code below it. I have found this significantly speeds up development, reduces the "just write code" syndrome that often requires rewrites for things that weren't originally considered as it forces you to think through the entire process before writing actual code, and serves as good base for code documentation after it is written.
I and the other developers on my team use it all the time. In emails, whiteboard, or just in confersation. Psuedocode is tought to help you think the way you need to, to be able to program. If you really unstand psuedocode you can catch on to almost any programming language because the main difference between them all is syntax.
If I'm working out something complex, I use it a lot, but I use it as comments. For instance, I'll stub out the procedure, and put in each step I think I need to do. As I then write the code, I'll leave the comments: it says what I was trying to do.
procedure GetTextFromValidIndex (input int indexValue, output string textValue)
// initialize
// check to see if indexValue is within the acceptable range
// get min, max from db
// if indexValuenot between min and max
// then return with an error
// find corresponding text in db based on indexValue
// return textValue
return "Not Written";
end procedure;
I've never, not even once, needed to write the pseudocode of a program before writing it.
However, occasionally I've had to write pseudocode after writing code, which usually happens when I'm trying to describe the high-level implementation of a program to get someone up to speed with new code in a short amount of time. And by "high-level implementation", I mean one line of pseudocode describes 50 or so lines of C#, for example:
Core dumps a bunch of XML files to a folder and runs the process.exe
executable with a few commandline parameters.
The process.exe reads each file
Each file is read line by line
Unique words are pulled out of the file stored in a database
File is deleted when its finished processing
That kind of pseudocode is good enough to describe roughly 1000 lines of code, and good enough to accurately inform a newbie what the program is actually doing.
On many occasions when I don't know how to solve a problem, I actually find myself drawing my modules on a whiteboard in very high level terms to get a clear picture of how their interacting, drawing a prototype of a database schema, drawing a datastructure (especially trees, graphs, arrays, etc) to get a good handle on how to traverse and process it, etc.
I use it when explaining concepts. It helps to trim out the unnecessary bits of language so that examples only have the details pertinent to the question being asked.
I use it a fair amount on StackOverflow.
I don't use pseudocode as it is taught in school, and haven't in a very long time.
I do use english descriptions of algorithms when the logic is complex enough to warrant it; they're called "comments". ;-)
when explaining things to others, or working things out on paper, i use diagrams as much as possible - the simpler the better
Steve McConnel's Code Complete, in its chapter 9, "The Pseudocode Programming Process" proposes an interesting approach: when writing a function longer than a few lines, use simple pseudocode (in the form of comments) to outline what the function/procedure needs to do before writing the actual code that does it. The pseudocode comments can then become actual comments in the body of the function.
I tend to use this for any function that does more than what can be quickly understood by looking at a screenful (max) of code. It works specially well if you are already used to separate your function body in code "paragraphs" - units of semantically related code separated by a blank line. Then the "pseudocode comments" work like "headers" to these paragraphs.
PS: Some people may argue that "you shouldn't comment what, but why, and only when it's not trivial to understand for a reader who knows the language in question better then you". I generally agree with this, but I do make an exception for the PPP. The criteria for the presence and form of a comment shouldn't be set in stone, but ultimately governed by wise, well-thought application of common sense anyway. If you find yourself refusing to try out a slight bent to a subjective "rule" just for the sake of it, you might need to step back and realize if you're not facing it critically enough.
Mostly use it for nutting out really complex code, or when explaining code to either other developers or non developers who understand the system.
I also flow diagrams or uml type diagrams when trying to do above also...
I generally use it when developing multiple if else statements that are nested which can be confusing.
This way I don't need to go back and document it since its already been done.
Fairly rarely, although I often document a method before writing the body of it.
However, If I'm helping another developer with how to approach a problem, I'll often write an email with a pseudocode solution.
I don't use pseudocode at all.
I'm more comfortable with the syntax of C style languages than I am with Pseudocode.
What I do do quite frequently for design purposes is essentially a functional decomposition style of coding.
public void doBigJob( params )
{
doTask1( params);
doTask2( params);
doTask3( params);
}
private void doTask1( params)
{
doSubTask1_1(params);
...
}
Which, in an ideal world, would eventually turn into working code as methods become more and more trivial. However, in real life, there is a heck of a lot of refactoring and rethinking of design.
We find this works well enough, as rarely do we come across an algorithm that is both: Incredibly complex and hard to code and not better solved using UML or other modelling technique.
I never use or used it.
I always try to prototype in a real language when I need to do something complex, usually writting unit tests first to figure out what the code needs to do.
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I've had several false starts in the past with teaching myself how to program. I've worked through several books (mostly C and Python), and end up just learning the syntax without feeling as though I could sit down and actually write a program for myself. When I try to look through the source trees of a project on Codeplex or Sourceforge, I never seem to know where to start reading the code -- the dependencies seem to go in all directions.
I feel as though I'm not learning programming the way it's done "on the street," so I figured I'd take a different approach to asking how a newbie should learn how to code. If you had to learn programming all over again, what are the things you wouldn't do? What did you spend time doing that you now know wasted you weeks or months?
Where I see beginners wasting weeks or months is typing at the keyboard. The computer is very responsive and will cheerfully chew up hours of your time in the edit-compile-run cycle. If you are learning you will save many hours if
You plan out your design on paper before you approach a computer. It doesn't matter what design method you pick or if you have never heard of a design method. Just write down a plan while your brain is fully engaged and not distracted by the computer.
When code will not compile or will not produce the right answer, if you can't fix it in five minutes, walk away from the computer. Go think about what's happening. Print out your code and scribble on it until you believe it's right.
These are just devices for helping to implement the simple but difficult old advice to think before you code.
When I was learning, I solved countless problems on the 15-minute walk from the computing center to my home. Sadly, with modern PCs we don't get that 15 minutes :-) If you can learn to take it anyway, you will become a better programmer, faster.
I certainly wouldn't start by looking at "real" software projects. Like you say, it's too hard to know where to start. That's largely because large projects are more about their large-scale design than about the individual algorithms or about program flow; for one thing, you're probably looking at a complex GUI application with multi-threading, etc. There isn't really anywhere to "start" looking at the code.
The best way to learn programming is to have a problem you want (need) to solve, and then going about solving it. But most importantly, WRITE CODE. When you read programming books, do ALL the exercises. Make sure you did them right. There's no substitute for writing code. No substitute for screwing up and then fixing it.
Stack Over F.. wait no, heh.
The biggest time-sinks for me are generally in respect to "finding the best answer." I often find that I will run into a problem that I know how to solve but feel that there is a better solution and go on the hunt for it. It is only hours/days later that I come to my senses and realize that I have 7 instances of Firefox, each containing at least 5 tabs sprawled out across 46" of monitor space that I realize that I've been caught in the black hole that is the pursuit of endless knowledge.
My advice to you, and myself for that matter, is to become comfortable with notion of refractoring. Essentially what this means (incase you are are not familiar with the term) is you come up with a solution for a problem and go with it, even if there is quite likely a better way of doing it. Once you have finished the problem, or even the program, you can then revisit your methodology, study it, and figure out where you can make changes to improve it.
This concept has always been hard for me to follow. In college I preferred to to write a paper once, print, and turn it in. Writing code can be thought of very similarly to writing a paper. Simply putting the pen to the pad and pushing out whats on your mind may work - but when you look back over it with a fresh pair of eyes you will, without question, see something you will wish you had done differently.
I just noticed you talked about reading through source trees of other people's projects. Reading other people's code is a wonderful idea, but you must read more selectively. A lot of open-source code is hard to read and not stuff you should emulate anyway. So avoid reading any code that hasn't been recommended by a programmer you respect.
Hint: Jon Bentley, Brian Kernighan, Rob Pike, and P. J. Plauger, who are all programmers I respect, have published a lot of code worth reading. In books.
The only way to learn how to program is to write more code. Reading books is great, but writing / fixing code is the best way to learn. You can't learn anything without doing.
You might also want to look at this book, How to Design Programs, for more of a perspective on design than details of syntax.
The only thing that I did that wasted weeks or months was worry about whether or not my designs were the best way to implement a particular solution. I know now that this is known as "premature optimization" and we all suffer from it to one degree or another. The right way to learn programming is to solve a problem, measure your solution to make sure it performs good enough, then move on to the next problem. After some time you'll have a pile of problems you've solved, but more importantly, you'll know a programming language.
There is excellent advice here, in other posts. Here are my thoughts:
1) Learn to type, the reasons are explained in this article by Steve Yegge. It will help more than you can imagine.
2) Reading code is generally considered a hard task. So, it is better to get an open source project, compile it, and start changing it and learn that way, rather than reading and trying to understand.
I can understand the situation you're in. Reading through books, even many will not make you programmer. What you need to do is START PROGRAMMING.
Actually programming is a lot like swimming in my opinion, even if you know only a little syntax and even lesser amount of coding techniques, start coding anyway. Make a small application, a home inventory, an expense catalog, a datesheet, a cd cataloger, anything you fancy.
The idea is to get into the nitty-gritties of it. Once you start programming you'll run into real-world problems and your problem solving skills will develop as you combat them. That's how you become a better programmer everyday.
So get into the thick of it, and swim right through... That's how you'll make it.
Good luck
I think this question will have wildly different answers for different people.
For myself, I tried C++ at one point (I was about ten and had already been programming for a while), with a click-and-drag UI builder. I think this was a mistake, and I should have gone straight to C and pointers and such. Because I'm just that kind of person.
In your case, it sounds like you want to be led down the right path by someone and feel a bit timid about jumping in and doing something by yourself. (You've read several books and now you're asking what not to do.)
I'll tell you how I learned: by doing plenty of fun, relatively short projects, steadily growing in difficulty. I began with QBasic (which I think is still a great learning tool) and it was there where I developed most of my programming skills. They have of course been expanded and refined since that time but I was already capable of good design back in those days.
The sorts of projects you could take on depend on your interests; if you're mathematically inclined you might want to try a prime number generator or projecting 3D points onto the screen; if you're interested in game design then you could try cloning pong (easy) or minesweeper (harder); or if you're more of a hacker you might want to make a simple chat program or file encryption software.
Work on these projects on your own, and don't worry about whether you're doing things the "right" way. As long as you get it to work, you've learned many things. Some time after you've completed a project you may want to revisit it and try to do it better, or just see how other people have done that sort of thing.
Given the way you seem to want to be led along, perhaps you should find yourself a mentor.
Do not learn how to use pointers and how to manually manage memory. You mentioned C, and I spent plenty of time trying to fix bugs that were caused by mixing *x and &x. This is evil...
Find some problem to solve, write or draw a sketch of an algorithm solving the problem, then try to write it. Either use Python (which is much more friendly for beginners) or use C with statically allocated memory only. And use books/tutorials. They offer multiple excercises with solutions, so you can compare yours with them and see other approaches.
Once you'll feel that you can actually write something simple, see some book/tutorial for Object Oriented Design. It's not the best the world has to offer, but it might turn out to be intuitive. If not, check the functional programming (like LISP, Scheme or Haskell languages), or programming in logic (like Prolog). Maybe those will suit you better.
Also - find some mate. A person you can talk to about coding, code maintenance and design. Such person is worth even more than a book.
To all C fans: The C language is great, really. It allows memory usage optimization to the extent impossible in high-level languages as Python or Ruby. The compiled code is also very fast, and is the only choice for RTOS, or modern 3D games engine. But this is not a good entry point for a beginner, that's what I believe.
Oh, and good luck to you! And don't be ashamed to ask! If you don't ask, the answer is much harder to find.
Assuming you have decent math skills try http://projecteuler.net/ It presents a series of problems to solve of increasing dificulty that should be solvible by writing short programs. This should give you experience in solving specific problems with out getting lost in the details of open source projects.
After basic language syntax, you need to learn design. Which is hard. This book may help.
I think you should stop thinking you've wasted time so far-- instead I think you're education is just incomplete, and you've taken a step you're not really ready for. It sounds like the books you've read are useful, you're learning the intricacies of the language. It sounds like you're just not accustomed to the tools you'd use then to package that code together so it runs.
Some books cover that focus on topics like language syntax, design patterns, algorithms and data structures will never mention the tools you need to actual apply that information. These books are great but if its all you've touched I think it would explain your situation.
What development environment are you using? If you're developing for windows you really should be proficient with creating projects, adding code, running and debugging in Visual Studio. You can download Visual Studio Express for free from Microsoft.
I recommend looking for tutorial like books that actually step you through the UI of development environment you are using. Look for actual screenshots with dropdown menus. Look at what the tutorials walk you through, and if its something you don't know how to do consider buying that book. Preferably it will have code you can copy'n'paste in, not code you write yourself.
I personally don't like these books as I can anticipate how to do new things in VS based on how I'd do other things. But if you're training is incomplete from a tools-usage perspective this could move you in the right direction.
It is probably harder to find these types of tutorial books for Python or C development. There is an overabundance of them for .Net development though.
As someone who has only been working as a programmer for 6 months, I might not be the best person to help you get going, but since it wasn't that long ago when I knew next to nothing, its quite fresh in my mind.
When I started my current job programming wasn't going to be part of my job description but when the opportunity came up to do some programming on the side, I couldn't pass it up.
I spent about 1 month doing tutorials on About.com's Delphi section. As much as people diss about.com, Zarko Gajic's tutorials were simple to understand and easy to follow. Once I had a basic knack of the language and the IDE, I jumped straight into a project exporting accounting data for a program called "Adept". Took me a while but I got there...
The biggest help for me was taking on a personal project. I developed an IRC bot in Java for a crappy 2D game called Soldat. I learnt a lot by planning out and coding my own project.
Now I'm pretty comfortable with Delphi Pascal, SQL, C# and Java. I think, once you get the hang of one OOP language, you can learn the syntax of another language, and it gets a lot easier to catch on.
Perhaps start with a small existing project, and find some thing within it that handles some core part of what it does - then with a debugger, step through it and follow what it's doing from the point where you ask it to do that thing for you.
This helps you in a number of ways. You start to better grasp all of the various things that are touched by the code as it attempts to complete its request. Also, you learn invaluable debugging techniques which it seems like far too many developers lack - while you can often eventually discover what is wrong either with repeated printf() (or equivalent) calls, if you can debug you can solve issues an order of magnitude faster.
I have found that conceptually, a great mental model for understanding programming in the abstract is a pattern of data flow. When a user manipulates data, how is it altered by a program for digestion and storage? How is it transformed to re-present to the user in a form that makes sense to them? Fundamentally code is about transformation of data, and all code can be broken down into constructs of various sizes whose purpose is to alter data in one way or another, bugs forming around the mismatch between what the programmer was expecting from the data, how high level libraries the coder is using treat the data, and how the data actually arrives. Following code with a debugger helps you fully understand this transformation in action by observing changes as they occur.
Standard answer is to make something; picking an easy language to do it in is good, but not essential. It's more the working out stuff in your own head, fixing it because it won't work, that really teaches you. For me, this always happens when I try my eternal dream projects (games) which I never finish but always learn from.
I think the thing I would avoid is learning a language in isolated snippets that don't really hang together but just teach various facets of a particular language. As others have said, the really hard and important thing is to learn design. I think the best way to do this is through a tutorial that walks you through creating an actual application, teaching design along the way. That way you can learn why certain decisions are made and learn how to accomplish what's needed to implement the design choices.
For example, I found Agile Web Development with Rails to be a really easy way to learn Ruby on Rails, much better than simply reading a Ruby manual or even poking my way around scattered web tutorials.
Another thing that I would avoid is developing code in isolation, that is, not having people look at it as I go along. Getting feedback from a mentor will help keep you on the right track with respect to the choices you are making and the correct use of language idioms.
Find a problem in your life or something you do that you just feel could be more efficient and write a small solution to it. It might just be a single script but you will gain much more confidence in your abilities when you start to see useful results of your work. You will also be more motivated to finish it as you are interested in using the solution. Start simple and small and then gradually move up to bigger projects.
And as your working on a small project, focus on building everything with quality. I think this is lost on some programmers who feel that their software is more impressive if it contains a ton of features but usually those features aren't well done or usable. If you focus on building quality solutions to real problems you'll be a fantastic programmer.
Good luck!
Work on projects/problems that you already know how to solve partially
You should read Mike clark's article : How I Learned Ruby. Essentially, he used the test framework for Ruby to exercise different elemnents of the languages.
I used this technique to learn python and it was very, very helpful. Not only did i learn the language, but I was very proficient in the test framework for Python at the end of the excercise. Once you have the basics you can start reading code and then working on building some larger project.