I'm trying to printk the cpus that a specific task is allowed to run on.
Inside struct task_struct (which can be find here) there's the cpumask_t cpus_allowed which from what I understand contains exactly what Im looking for .
Is that right ?
If so, how do I extract the cpus' numbers that are allowed ?
for example my comp has 8 logical cores - so Im expecting that somewhere inside cpus_allowed I can find those numbers (for example - 0,2,5)
Macro for_each_cpu will iterate over all CPU's, allowed by the given mask:
// Assume `mask` is given.
int cpu;
for_each_cpu(cpu, mask)
{
printk("Allowed CPU: %d\n", cpu);
}
Ok, I found a function inside the kernel that does exactly what I needed in cpumask.h cpumask_scnprintf:
/**
* cpumask_scnprintf - print a cpumask into a string as comma-separated hex
* #buf: the buffer to sprintf into
* #len: the length of the buffer
* #srcp: the cpumask to print
*
* If len is zero, returns zero. Otherwise returns the length of the
* (nul-terminated) #buf string.
*/
static inline int cpumask_scnprintf(char *buf, int len,
const struct cpumask *srcp)
{
return bitmap_scnprintf(buf, len, cpumask_bits(srcp), nr_cpumask_bits);
}
Use the function cpumask_pr_args() defined inside cpumask.h.
Usage:
printk("%*pbl\n", cpumask_pr_args(mask));
See here for information about the %*pbl placeholder.
Related
this is not about programming, but I ask it here..
in linux start_kernel() function, in the mm_init() function, I see vmalloc_init() function.
inside the function I see codes like this.
void __init vmalloc_init(void)
{
struct vmap_area *va;
struct vm_struct *tmp;
int i;
/*
* Create the cache for vmap_area objects.
*/
vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
for_each_possible_cpu(i) {
struct vmap_block_queue *vbq;
struct vfree_deferred *p;
vbq = &per_cpu(vmap_block_queue, i);
spin_lock_init(&vbq->lock);
INIT_LIST_HEAD(&vbq->free);
p = &per_cpu(vfree_deferred, i);
init_llist_head(&p->list);
INIT_WORK(&p->wq, free_work);
}
/* Import existing vmlist entries. */
for (tmp = vmlist; tmp; tmp = tmp->next) {
va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
if (WARN_ON_ONCE(!va))
continue;
va->va_start = (unsigned long)tmp->addr;
va->va_end = va->va_start + tmp->size;
va->vm = tmp;
insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
}
/*
* Now we can initialize a free vmap space.
*/
vmap_init_free_space();
vmap_initialized = true;
}
I'm not sure if this code is run on every cpu(core) or just on the first cpu?
if this code runs on every smp core, how is this code inside for_each_possible_cpu loop run?
The smp setup seems to be done before this function.
start_kernel() calls mm_init() which calls vmalloc_init(). Only the first (boot) CPU is active at that point. Later, start_kernel() calls arch_call_rest_init() which calls rest_init().
rest_init() creates a kernel thread for the init task with entry point kernel_init(). kernel_init() calls kernel_init_freeable(). kernel_init_freeable() eventually calls smp_init() to activate the remaining CPUs.
Every macro in for_each_cpu family is just wrapper for for() loop, where iterator is a CPU index.
E.g., the core macro of this family is defined as
#define for_each_cpu(cpu, mask) \
for ((cpu) = -1; \
(cpu) = cpumask_next((cpu), (mask)), \
(cpu) < nr_cpu_ids;)
Each macro in for_each_cpu family uses its own CPUs mask, which is just a set of bits corresponded to CPU indices. E.g. mask for for_each_possible_cpu macro have bits set for every index of CPU which could ever be enabled in current machine session.
When performing shm-related development on MacOS, the searched processes are shown in the following code (verification is indeed correct).
However, there is a new problem that cannot be solved. It is found that when ftruncat adjusts the memory size for shm_fd, it is allocated according to the multiple of the page size.
But in this case, when the shared memory file is opened by other processes, the actual data size cannot be obtained correctly. The obtained file size is an integer multiple of the page, which will cause an error when appending data.
// write data_size = 12
char *data = "....";
long data_size = 12;
shmFD = shm_open(...);
ftruncate(shmFD, data_size); // Actually the size actually allocated is not 12, but 4096
shmAddr = (char *)mmap(NULL, data_size, ... , shmFD, 0);
memcpy(shmAddr, data, data_size);
// read
...
fstat(shmFD, &sb)
long context_len_in_shm = sb.st_size;
// get wrong shm size -> context_len_in_shm = 4096
Temporarily use the following structure to record data into shm. The first operation before writing or reading is to get the value of the data_len field, and then determine the length of the data to be read and written from the back. Hope for a more concise way, just like the use of lseek() under Linux.
shm mem map :
----shm mem----
struct {
long data_len;
data[1];
data[2];
...
data[data_len];
}
---------------
long *shm_mem = (long *)shmAddr;
long data_size = shm_mem[0]; // Before reading, you need to determine whether the shm file is empty and whether the pointer is valid. It is omitted here.
char *shm_data = (char *)&(shm_mem[1]);
char *buffer = (char *)malloc(data_size);
memcpy(buffer, shm_data, data_size);
Using the ATting1616 within avr-gcc I am trying to read and write to the EEPROM.
The ATtiny1616 uses NVMCTRL - Nonvolatile Memory Controller for byte level read/writes. I am using NVMCTRL to read/write blocks from the EEPROM, but it is not working correctly.
Here is an example to demonstrate what I am trying to so.
Lets say that I was to save two different values within the EEPROM and then read back each ones value.
uint16_t eeprom_address1 = 0x01;//!< Address one for first saved value
uint16_t eeprom_address2 = 0x32;//!< Address two for second saved value
char save_one = "12345"; //!< Test value to save, one
char save_two = "testing";//!< Test value to save, two
FLASH_0_write_eeprom_block(eeprom_address1,save_one,7); //!< Save first value to address 1
FLASH_0_write_eeprom_block(eeprom_address2,save_two,7); //!< Save second value to address 2
char test_data[7] = {0}; //!< Just some empty array to put chars into
FLASH_0_read_eeprom_block(eeprom_address1,test_data,7); //!< Read eeprom from address, to address+ 7, and store back into test_data
Here are the read/write functions:
# define EEPROM_START (0x1400)//!< is located in header file
/**
* \brief Read a block from eeprom
*
* \param[in] eeprom_adr The byte-address in eeprom to read from
* \param[in] data Buffer to place read data into
*
* \return Nothing
*/
void FLASH_0_read_eeprom_block(eeprom_adr_t eeprom_adr, uint8_t *data, size_t size)
{
// Read operation will be stalled by hardware if any write is in progress
memcpy(data, (uint8_t *)(EEPROM_START + eeprom_adr), size);
}
/**
* \brief Write a block to eeprom
*
* \param[in] eeprom_adr The byte-address in eeprom to write to
* \param[in] data The buffer to write
*
* \return Status of write operation
*/
nvmctrl_status_t FLASH_0_write_eeprom_block(eeprom_adr_t eeprom_adr, uint8_t *data, size_t size)
{
uint8_t *write = (uint8_t *)(EEPROM_START + eeprom_adr);
/* Wait for completion of previous write */
while (NVMCTRL.STATUS & NVMCTRL_EEBUSY_bm)
;
/* Clear page buffer */
ccp_write_spm((void *)&NVMCTRL.CTRLA, NVMCTRL_CMD_PAGEBUFCLR_gc);
do {
/* Write byte to page buffer */
*write++ = *data++;
size--;
// If we have filled an entire page or written last byte to a partially filled page
if ((((uintptr_t)write % EEPROM_PAGE_SIZE) == 0) || (size == 0)) {
/* Erase written part of page and program with desired value(s) */
ccp_write_spm((void *)&NVMCTRL.CTRLA, NVMCTRL_CMD_PAGEERASEWRITE_gc);
}
} while (size != 0);
return NVM_OK;
}
The value that is turned if test_data[7] is printed will be "testing".
When looking at the memory in debug mode I am able to see that the value is always being written to the first memory location in the data EEPROM.[0x1400]
In this case starting at memory x1400 the value of "testing" starts.
There seems to be something fundamental that I have failed to understand with reading and write to the EEPROM. Any guidance would be greatly appreciated.
I am working on updating our kernel drivers to work with linux kernel 4.4.0 on Ubuntu 16.0.4. The drivers last worked with linux kernel 3.9.2.
In one of the modules, we have a procfs entries created to read/write the on-board fan monitoring values. Fan monitoring is used to read/write the CPU or GPU temperature/modulation,etc. values.
The module is using the following api to create procfs entries:
struct proc_dir_entry *create_proc_entry(const char *name, umode_t
mode,struct proc_dir_entry *parent);
Something like:
struct proc_dir_entry * proc_entry =
create_proc_entry("fmon_gpu_temp",0644,proc_dir);
proc_entry->read_proc = read_proc;
proc_entry->write_proc = write_proc;
Now, the read_proc is implemented something in this way:
static int read_value(char *buf, char **start, off_t offset, int count, int *eof, void *data) {
int len = 0;
int idx = (int)data;
if(idx == TEMP_FANCTL)
len = sprintf (buf, "%d.%02d\n", fmon_readings[idx] / TEMP_SAMPLES,
fmon_readings[idx] % TEMP_SAMPLES * 100 / TEMP_SAMPLES);
else if(idx == TEMP_CPU) {
int i;
len = sprintf (buf, "%d", fmon_readings[idx]);
for( i=0; i < FCTL_MAX_CPUS && fmon_cpu_temps[i]; i++ ) {
len += sprintf (buf+len, " CPU%d=%d",i,fmon_cpu_temps[i]);
}
len += sprintf (buf+len, "\n");
}
else if(idx >= 0 && idx < READINGS_MAX)
len = sprintf (buf, "%d\n", fmon_readings[idx]);
*eof = 1;
return len;
}
This read function definitely assumes that the user has provided enough buffer space to store the temperature value. This is correctly handled in userspace program. Also, for every call to this function the read value is in totality and therefore there is no support/need for subsequent reads for same temperature value.
Plus, if I use "cat" program on this procfs entry from shell, the 'cat' program correctly displays the value. This is supported, I think, by the setting of EOF to true and returning read bytes count.
New linux kernels do not support this API anymore.
My question is:
How can I change this API to new procfs API structure keeping the functionality same as: every read should return the value, program 'cat' should also work fine and not go into infinite loop ?
The primary user interface for read files on Linux is read(2). Its pair in kernel space is .read function in struct file_operations.
Every other mechanism for read file in kernel space (read_proc, seq_file, etc.) is actually an (parametrized) implementation of .read function.
The only way for kernel to return EOF indicator to user space is returning 0 as number of bytes read.
Even read_proc implementation you have for 3.9 kernel actually implements eof flag as returning 0 on next invocation. And cat actually perfoms the second invocation of read for find that file is end.
(Moreover, cat performs more than 2 invocations of read: first with 1 as count, second with count equal to page size minus 1, and the last with remaining count.)
The simplest way for "one-shot" read implementation is using seq_file in single_open() mode.
I want to allocate memory for some elements of a structure, which are pointers to other small structs.How do I allocate and de-allocate memory in best way?
Ex:
typedef struct _SOME_STRUCT {
PDATATYPE1 PDatatype1;
PDATATYPE2 PDatatype2;
PDATATYPE3 PDatatype3;
.......
PDATATYPE12 PDatatype12;
} SOME_STRUCT, *PSOME_STRUCT;
I want to allocate memory for PDatatype1,3,4,6,7,9,11.Can I allocate memory with single malloc? or what is the best way to allocate memory for only these elements and how to free the whole memory allocated?
There is a trick that allows a single malloc, but that also has to weighed against doing a more standard multiple malloc approach.
If [and only if], once the DatatypeN elements of SOME_STRUCT are allocated, they do not need to be reallocated in any way, nor does any other code do a free on any of them, you can do the following [the assumption that PDATATYPEn points to DATATYPEn]:
PSOME_STRUCT
alloc_some_struct(void)
{
size_t siz;
void *vptr;
PSOME_STRUCT sptr;
// NOTE: this optimizes down to a single assignment
siz = 0;
siz += sizeof(DATATYPE1);
siz += sizeof(DATATYPE2);
siz += sizeof(DATATYPE3);
...
siz += sizeof(DATATYPE12);
sptr = malloc(sizeof(SOME_STRUCT) + siz);
vptr = sptr;
vptr += sizeof(SOME_STRUCT);
sptr->Pdatatype1 = vptr;
// either initialize the struct pointed to by sptr->Pdatatype1 here or
// caller should do it -- likewise for the others ...
vptr += sizeof(DATATYPE1);
sptr->Pdatatype2 = vptr;
vptr += sizeof(DATATYPE2);
sptr->Pdatatype3 = vptr;
vptr += sizeof(DATATYPE3);
...
sptr->Pdatatype12 = vptr;
vptr += sizeof(DATATYPE12);
return sptr;
}
Then, the when you're done, just do free(sptr).
The sizeof above should be sufficient to provide proper alignment for the sub-structs. If not, you'll have to replace them with a macro (e.g. SIZEOF) that provides the necessary alignment. (e.g.) for 8 byte alignment, something like:
#define SIZEOF(_siz) (((_siz) + 7) & ~0x07)
Note: While it is possible to do all this, and it is more common for things like variable length string structs like:
struct mystring {
int my_strlen;
char my_strbuf[0];
};
struct mystring {
int my_strlen;
char *my_strbuf;
};
It is debatable whether it's worth the [potential] fragility (i.e. somebody forgets and does the realloc/free on the individual elements). The cleaner way would be to embed the actual structs rather than the pointers to them if the single malloc is a high priority for you.
Otherwise, just do the the [more] standard way and do the 12 individual malloc calls and, later, the 12 free calls.
Still, it is a viable technique, particularly on small memory constrained systems.
Here is the [more] usual way involving per-element allocations:
PSOME_STRUCT
alloc_some_struct(void)
{
void *vptr;
PSOME_STRUCT sptr;
sptr = malloc(sizeof(SOME_STRUCT));
// either initialize the struct pointed to by sptr->Pdatatype1 here or
// caller should do it -- likewise for the others ...
sptr->Pdatatype1 = malloc(sizeof(DATATYPE1));
sptr->Pdatatype2 = malloc(sizeof(DATATYPE2));
sptr->Pdatatype3 = malloc(sizeof(DATATYPE3));
...
sptr->Pdatatype12 = malloc(sizeof(DATATYPE12));
return sptr;
}
void
free_some_struct(PSOME_STRUCT sptr)
{
free(sptr->Pdatatype1);
free(sptr->Pdatatype2);
free(sptr->Pdatatype3);
...
free(sptr->Pdatatype12);
free(sptr);
}
If your structure contains the others structures as elements instead of pointers, you can allocate memory for the combined structure in one shot:
typedef struct _SOME_STRUCT {
DATATYPE1 Datatype1;
DATATYPE2 Datatype2;
DATATYPE3 Datatype3;
.......
DATATYPE12 Datatype12;
} SOME_STRUCT, *PSOME_STRUCT;
PSOME_STRUCT p = (PSOME_STRUCT)malloc(sizeof(SOME_STRUCT));
// Or without malloc:
PSOME_STRUCT p = new SOME_STRUCT();