Find the highest minimum difference of a number from a given range - algorithm

Say I have an array of N numbers {A1, A2, ... , An} and 2 numbers P, Q
I have to find an integer M between P and Q , such that, min {|Ai-M|, 1 ≤ i ≤ N} is maximised.
1 < N < P ≤ Q ≤ 10^6
in simpler words:
for each number, find the minimum absolute difference between this number and the array.
then out of all those minimum differences, find the number who has the highest minimum difference.
I have to do this in O(NlogN) or less.
I have tried the following:
sort the array A (NlogN)
iterate over all the numbers between P and Q and for each number find the minimum difference using modified binary search and keep track who has the highest difference - O((Q-P)logN)
I'm guessing there is some kind of math "trick" like using average I'm missing..
edit (add example):
for example if you have the array
{5 8 14}
and P=4 Q=9
the answer is 4,6,7, or 9.
lets look at the numbers 4-9
|4-5| = 1
|4-8| = 4
|4-14| = 10
so minimum diff for 4 is 1
|5-5| = 0
|5-8| = 3
|5-14| = 9
so minimum diff for 4 is 0
we keep going and find minimum diff for all the numbers and then we need to say which number (4/5/6/7/8/9) had the highest minimum diff (in this example 4,6,7 and 9 have 1 minimum difference which is max among all minimum differences)

First you have to sort an array. Then you have to notice that your solution is either P or Q or some point x[i] = (A[i] + A[i+1]) // 2. Basically x[i] is in the middle between consecutive elements in the array (if this x[i] is between P, Q).
Because N is really small, this will run basically in O(1).

Related

Dividing N items in p groups

You are given N total number of item, P group in which you have to divide the N items.
Condition is the product of number of item held by each group should be max.
example N=10 and P=3 you can divide the 10 item in {3,4,3} since 3x3x4=36 max possible product.
You will want to form P groups of roughly N / P elements. However, this will not always be possible, as N might not be divisible by P, as is the case for your example.
So form groups of floor(N / P) elements initially. For your example, you'd form:
floor(10 / 3) = 3
=> groups = {3, 3, 3}
Now, take the remainder of the division of N by P:
10 mod 3 = 1
This means you have to distribute 1 more item to your groups (you can have up to P - 1 items left to distribute in general):
for i = 0 up to (N mod P) - 1:
groups[i]++
=> groups = {4, 3, 3} for your example
Which is also a valid solution.
For fun I worked out a proof of the fact that it in an optimal solution either all numbers = N/P or the numbers are some combination of floor(N/P) and ceiling(N/P). The proof is somewhat long, but proving optimality in a discrete context is seldom trivial. I would be interested if anybody can shorten the proof.
Lemma: For P = 2 the optimal way to divide N is into {N/2, N/2} if N is even and {floor(N/2), ceiling(N/2)} if N is odd.
This follows since the constraint that the two numbers sum to N means that the two numbers are of the form x, N-x.
The resulting product is (N-x)x = Nx - x^2. This is a parabola that opens down. Its max is at its vertex at x = N/2. If N is even this max is an integer. If N is odd, then x = N/2 is a fraction, but such parabolas are strictly unimodal, so the closer x gets to N/2 the larger the product. x = floor(N/2) (or ceiling, it doesn't matter by symmetry) is the closest an integer can get to N/2, hence {floor(N/2),ceiling(N/2)} is optimal for integers.
General case: First of all, a global max exists since there are only finitely many integer partitions and a finite list of numbers always has a max. Suppose that {x_1, x_2, ..., x_P} is globally optimal. Claim: given and i,j we have
|x_i - x_ j| <= 1
In other words: any two numbers in an optimal solution differ by at most 1. This follows immediately from the P = 2 lemma (applied to N = x_i + x_ j).
From this claim it follows that there are at most two distinct numbers among the x_i. If there is only 1 number, that number is clearly N/P. If there are two numbers, they are of the form a and a+1. Let k = the number of x_i which equal a+1, hence P-k of the x_i = a. Hence
(P-k)a + k(a+1) = N, where k is an integer with 1 <= k < P
But simple algebra yields that a = (N-k)/P = N/P - k/P.
Hence -- a is an integer < N/P which differs from N/P by less than 1 (k/P < 1)
Thus a = floor(N/P) and a+1 = ceiling(N/P).
QED

Generate a random integer from 0 to N-1 which is not in the list

You are given N and an int K[].
The task at hand is to generate a equal probabilistic random number between 0 to N-1 which doesn't exist in K.
N is strictly a integer >= 0.
And K.length is < N-1. And 0 <= K[i] <= N-1. Also assume K is sorted and each element of K is unique.
You are given a function uniformRand(int M) which generates uniform random number in the range 0 to M-1 And assume this functions's complexity is O(1).
Example:
N = 7
K = {0, 1, 5}
the function should return any random number { 2, 3, 4, 6 } with equal
probability.
I could get a O(N) solution for this : First generate a random number between 0 to N - K.length. And map the thus generated random number to a number not in K. The second step will take the complexity to O(N). Can it be done better in may be O(log N) ?
You can use the fact that all the numbers in K[] are between 0 and N-1 and they are distinct.
For your example case, you generate a random number from 0 to 3. Say you get a random number r. Now you conduct binary search on the array K[].
Initialize i = K.length/2.
Find K[i] - i. This will give you the number of numbers missing from the array in the range 0 to i.
For example K[2] = 5. So 3 elements are missing from K[0] to K[2] (2,3,4)
Hence you can decide whether you have to conduct the remaining search in the first part of array K or the next part. This is because you know r.
This search will give you a complexity of log(K.length)
EDIT: For example,
N = 7
K = {0, 1, 4} // modified the array to clarify the algorithm steps.
the function should return any random number { 2, 3, 5, 6 } with equal probability.
Random number generated between 0 and N-K.length = random{0-3}. Say we get 3. Hence we require the 4th missing number in array K.
Conduct binary search on array K[].
Initial i = K.length/2 = 1.
Now we see K[1] - 1 = 0. Hence no number is missing upto i = 1. Hence we search on the latter part of the array.
Now i = 2. K[2] - 2 = 4 - 2 = 2. Hence there are 2 missing numbers up to index i = 2. But we need the 4th missing element. So we again have to search in the latter part of the array.
Now we reach an empty array. What should we do now? If we reach an empty array between say K[j] & K[j+1] then it simply means that all elements between K[j] and K[j+1] are missing from the array K.
Hence all elements above K[2] are missing from the array, namely 5 and 6. We need the 4th element out of which we have already discarded 2 elements. Hence we will choose the second element which is 6.
Binary search.
The basic algorithm:
(not quite the same as the other answer - the number is only generated at the end)
Start in the middle of K.
By looking at the current value and it's index, we can determine the number of pickable numbers (numbers not in K) to the left.
Similarly, by including N, we can determine the number of pickable numbers to the right.
Now randomly go either left or right, weighted based on the count of pickable numbers on each side.
Repeat in the chosen subarray until the subarray is empty.
Then generate a random number in the range consisting of the numbers before and after the subarray in the array.
The running time would be O(log |K|), and, since |K| < N-1, O(log N).
The exact mathematics for number counts and weights can be derived from the example below.
Extension with K containing a bigger range:
Now let's say (for enrichment purposes) K can also contain values N or larger.
Then, instead of starting with the entire K, we start with a subarray up to position min(N, |K|), and start in the middle of that.
It's easy to see that the N-th position in K (if one exists) will be >= N, so this chosen range includes any possible number we can generate.
From here, we need to do a binary search for N (which would give us a point where all values to the left are < N, even if N could not be found) (the above algorithm doesn't deal with K containing values greater than N).
Then we just run the algorithm as above with the subarray ending at the last value < N.
The running time would be O(log N), or, more specifically, O(log min(N, |K|)).
Example:
N = 10
K = {0, 1, 4, 5, 8}
So we start in the middle - 4.
Given that we're at index 2, we know there are 2 elements to the left, and the value is 4, so there are 4 - 2 = 2 pickable values to the left.
Similarly, there are 10 - (4+1) - 2 = 3 pickable values to the right.
So now we go left with probability 2/(2+3) and right with probability 3/(2+3).
Let's say we went right, and our next middle value is 5.
We are at the first position in this subarray, and the previous value is 4, so we have 5 - (4+1) = 0 pickable values to the left.
And there are 10 - (5+1) - 1 = 3 pickable values to the right.
We can't go left (0 probability). If we go right, our next middle value would be 8.
There would be 2 pickable values to the left, and 1 to the right.
If we go left, we'd have an empty subarray.
So then we'd generate a number between 5 and 8, which would be 6 or 7 with equal probability.
This can be solved by basically solving this:
Find the rth smallest number not in the given array, K, subject to
conditions in the question.
For that consider the implicit array D, defined by
D[i] = K[i] - i for 0 <= i < L, where L is length of K
We also set D[-1] = 0 and D[L] = N
We also define K[-1] = 0.
Note, we don't actually need to construct D. Also note that D is sorted (and all elements non-negative), as the numbers in K[] are unique and increasing.
Now we make the following claim:
CLAIM: To find the rth smallest number not in K[], we need to find right most occurrence of r' in D (which occurs at position defined by j), where r' is the largest number in D, which is < r. Such an r' exists, because D[-1] = 0. Once we find such an r' (and j), the number we are looking for is r-r' + K[j].
Proof: Basically the definition of r' and j tells us that there are exactlyr' numbers missing from 0 to K[j], and more than r numbers missing from 0 to K[j+1]. Thus all the numbers from K[j]+1 to K[j+1]-1 are missing (and these missing are at least r-r' in number), and the number we seek is among them, given by K[j] + r-r'.
Algorithm:
In order to find (r',j) all we need to do is a (modified) binary search for r in D, where we keep moving to the left even if we find r in the array.
This is an O(log K) algorithm.
If you are running this many times, it probably pays to speed up your generation operation: O(log N) time just isn't acceptable.
Make an empty array G. Starting at zero, count upwards while progressing through the values of K. If a value isn't in K add it to G. If it is in K don't add it and progress your K pointer. (This relies on K being sorted.)
Now you have an array G which has only acceptable numbers.
Use your random number generator to choose a value from G.
This requires O(N) preparatory work and each generation happens in O(1) time. After N look-ups the amortized time of all operations is O(1).
A Python mock-up:
import random
class PRNG:
def __init__(self, K,N):
self.G = []
kptr = 0
for i in range(N):
if kptr<len(K) and K[kptr]==i:
kptr+=1
else:
self.G.append(i)
def getRand(self):
rn = random.randint(0,len(self.G)-1)
return self.G[rn]
prng=PRNG( [0,1,5], 7)
for i in range(20):
print prng.getRand()

Finding a certain set of numbers from a list

I am working on this project where the user inputs a list of numbers. I put these numbers in an array. I need to find a set of numbers with a given length whose sum is divisible by 5.
For example, if the list is 9768014, and the length required is 6, then the output would be 987641.
What algorithm do I need to find that set of numbers?
You can solve this by dynamic programming. Let f(n,m,k) be the largest index between 1 and n of the number in a subset of indices {1,2,....,n} that gives a sum of k mod 5 that uses m numbers. (It's possible that f(n,m,k) = None). You can compute f(n+1,m,k) and f(n,m+1,k) if you know the values of f(N,M,k) for all N <= n + 1 and M < m and also for all N <= n and M < m + 1 and also for N=n,M=m, and all k = 0,1,2,3,4. If you ever find that f(n,m,0) has a solution where m is your desired number of numbers to use, then you're done. Also you don't have to compute f(N,M,k) for any M greater than your desired count of numbers to use. Total complexity is O(n*m) where n is the total count of numbers and m is the size of subset that you are trying to reach.

Count of numbers between A and B (inclusive) that have sum of digits equal to S

The problems is to find the count of numbers between A and B (inclusive) that have sum of digits equal to S.
Also print the smallest such number between A and B (inclusive).
Input:
Single line consisting of A,B,S.
Output:
Two lines.
In first line the number of integers between A and B having sum of digits equal to S.
In second line the smallest such number between A and B.
Constraints:
1 <= A <= B < 10^15
1 <= S <= 135
Source: Hacker Earth
My solution works for only 30 pc of their inputs. What could be the best possible solution to this?
The algorithm I am using now computes the sum of the smallest digit and then upon every change of the tens digit computes the sum again.
Below is the solution in Python:
def sum(n):
if (n<10):return n
return n%10 + sum(n/10)
stri = raw_input()
min = 99999
stri = stri.split(" ")
a= long (stri[0])
b= long (stri[1])
s= long (stri[2])
count= 0
su = sum(a)
while a<=b :
if (a % 10 == 0 ):
su = sum(a)
print a
if ( s == su):
count+=1
if (a<= min):
min=a
a+=1
su+=1
print count
print min
There are two separate problems here: finding the smallest number between those numbers that has the right digit sum and finding the number of values in the range with that digit sum. I'll talk about those problems separately.
Counting values between A and B with digit sum S.
The general approach for solving this problem will be the following:
Compute the number of values less than or equal to A - 1 with digit sum S.
Compute the number of values less than or equal to B with digit sum S.
Subtract the first number from the second.
To do this, we should be able to use a dynamic programming approach. We're going to try to answer queries of the following form:
How many D-digit numbers are there, whose first digit is k, whose digits that sum up to S?
We'll create a table N[D, k, S] to hold these values. We know that D is going to be at most 16 and that S is going to be at most 136, so this table will have only 10 × 16 × 136 = 21,760 entries, which isn't too bad. To fill it in, we can use the following base cases:
N[1, S, S] = 1 for 0 ≤ S ≤ 9, since there's only one one-digit number that sums up to any value less than ten.
N[1, k, S] = 0 for 0 ≤ S ≤ 9 if k ≠ S, since no one-digit number whose first digit isn't a particular sum sums up to some value.
N[1, k, S] = 0 for 10 ≤ S ≤ 135, since no one-digit number sums up to exactly S for any k greater than a single digit.
N[1, k, S] = 0 for any S < 0.
Then, we can use the following logic to fill in the other table entries:
N[D + 1, k, S] = sum(i from 0 to 9) N[D, i, S - k].
This says that the number of (D+1)-digit numbers whose first digit is k that sum up to S is given by the number of D-digit numbers that sum up to S - k. The number of D-digit numbers that sum up to S - k is given by the number of D-digit numbers that sum up to S - k whose first digit is 0, 1, 2, ..., 9, so we have to sum up over them.
Filling in this DP table takes time only O(1), and in fact you could conceivably precompute it and hardcode it into the program if you were really concerned about time.
So how can we use this table? Well, suppose we want to know how many numbers that sum up to S are less than or equal to some number X. To do this, we can process the digits of X one at a time. Let's write X one digit at a time as d1 ... dn. We can start off by looking at N[n, d1, S]. This gives us the number of n-digit numbers whose first digit is d1 that sum up to S. This may overestimate the number of values less than or equal to X that sum up to S. For example, if our number is 21,111 and we want the number of values that sum up to exactly 12, then looking up this table value will give us false positives for numbers like 29,100 that start with a 2 and are five digits long, but which are still greater than X. To handle this, we can move to the next digit of the number X. Since the first digit was a 2, the rest of the digits in the number must sum up to 10. Moreover, since the next digit of X (21,111) is a 1, we can now subtract from our total the number of 4-digit numbers starting with 2, 3, 4, 5, ..., 9 that add up to 10. We can then repeat this process one digit at a time.
More generally, our algorithm will be as follows. Let X be our number and S the target sum. Write X = d1d2...dn and compute the following:
# Begin by starting with all numbers whose first digit is less than d[1].
# Those count as well.
result = 0
for i from 0 to d[1]:
result += N[n, i, S]
# Now, exclude everything whose first digit is d[1] that is too large.
S -= d[1]
for i = 2 to n:
for j = d[i] to 8:
result -= N[n, d[i], S]
S -= d[i]
The value of result will then be the number of values less than or equal to X that sum up to exactly S. This algorithm will only run for at most 16 iterations, so it should be very quick. Moreover, using this algorithm and the earlier subtraction trick, we can use it to compute how many values between A and B sum up to exactly S.
Finding the smallest value in [A, B] with digit sum S.
We can use a similar trick with our DP table to find the smallest number greater than A number that sums up to exactly S. I'll leave the details as an exercise, but as a hint, work one digit at a time, trying to find the smallest number for which the DP table returns a nonzero value.
Hope this helps!

Levenstein distance from particular group of numbers

My input are three numbers - a number s and the beginning b and end e of a range with 0 <= s,b,e <= 10^1000. The task is to find the minimal Levenstein distance between s and all numbers in range [b, e]. It is not necessary to find the number minimizing the distance, the minimal distance is sufficient.
Obviously I have to read the numbers as string, because standard C++ type will not handle such large numbers. Calculating the Levenstein distance for every number in the possibly huge range is not feasible.
Any ideas?
[EDIT 10/8/2013: Some cases considered in the DP algorithm actually don't need to be considered after all, though considering them does not lead to incorrectness :)]
In the following I describe an algorithm that takes O(N^2) time, where N is the largest number of digits in any of b, e, or s. Since all these numbers are limited to 1000 digits, this means at most a few million basic operations, which will take milliseconds on any modern CPU.
Suppose s has n digits. In the following, "between" means "inclusive"; I will say "strictly between" if I mean "excluding its endpoints". Indices are 1-based. x[i] means the ith digit of x, so e.g. x[1] is its first digit.
Splitting up the problem
The first thing to do is to break up the problem into a series of subproblems in which each b and e have the same number of digits. Suppose e has k >= 0 more digits than s: break up the problem into k+1 subproblems. E.g. if b = 5 and e = 14032, create the following subproblems:
b = 5, e = 9
b = 10, e = 99
b = 100, e = 999
b = 1000, e = 9999
b = 10000, e = 14032
We can solve each of these subproblems, and take the minimum solution.
The easy cases: the middle
The easy cases are the ones in the middle. Whenever e has k >= 1 more digits than b, there will be k-1 subproblems (e.g. 3 above) in which b is a power of 10 and e is the next power of 10, minus 1. Suppose b is 10^m. Notice that choosing any digit between 1 and 9, followed by any m digits between 0 and 9, produces a number x that is in the range b <= x <= e. Furthermore there are no numbers in this range that cannot be produced this way. The minimum Levenshtein distance between s (or in fact any given length-n digit string that doesn't start with a 0) and any number x in the range 10^m <= x <= 10^(m+1)-1 is necessarily abs(m+1-n), since if m+1 >= n it's possible to simply choose the first n digits of x to be the same as those in s, and delete the remainder, and if m+1 < n then choose the first m+1 to be the same as those in s and insert the remainder.
In fact we can deal with all these subproblems in a single constant-time operation: if the smallest "easy" subproblem has b = 10^m and the largest "easy" subproblem has b = 10^u, then the minimum Levenshtein distance between s and any number in any of these ranges is m-n if n < m, n-u if n > u, and 0 otherwise.
The hard cases: the end(s)
The hard cases are when b and e are not restricted to have the form b = 10^m and e = 10^(m+1)-1 respectively. Any master problem can generate at most two subproblems like this: either two "ends" (resulting from a master problem in which b and e have different numbers of digits, such as the example at the top) or a single subproblem (i.e. the master problem itself, which didn't need to be subdivided at all because b and e already have the same number of digits). Note that due to the previous splitting of the problem, we can assume that the subproblem's b and e have the same number of digits, which we will call m.
Super-Levenshtein!
What we will do is design a variation of the Levenshtein DP matrix that calculates the minimum Levenshtein distance between a given digit string (s) and any number x in the range b <= x <= e. Despite this added "power", the algorithm will still run in O(n^2) time :)
First, observe that if b and e have the same number of digits and b != e, then it must be the case that they consist of some number q >= 0 of identical digits at the left, followed by a digit that is larger in e than in b. Now consider the following procedure for generating a random digit string x:
Set x to the first q digits of b.
Append a randomly-chosen digit d between b[i] and e[i] to x.
If d == b[i], we "hug" the lower bound:
For i from q+1 to m:
If b[i] == 9 then append b[i]. [EDIT 10/8/2013: Actually this can't happen, because we chose q so that e[i] will be larger then b[i], and there is no digit larger than 9!]
Otherwise, flip a coin:
Heads: Append b[i].
Tails: Append a randomly-chosen digit d > b[i], then goto 6.
Stop.
Else if d == e[i], we "hug" the upper bound:
For i from q+1 to m:
If e[i] == 0 then append e[i]. [EDIT 10/8/2013: Actually this can't happen, because we chose q so that b[i] will be smaller then e[i], and there is no digit smaller than 0!]
Otherwise, flip a coin:
Heads: Append e[i].
Tails: Append a randomly-chosen digit d < e[i], then goto 6.
Stop.
Otherwise (if d is strictly between b[i] and e[i]), drop through to step 6.
Keep appending randomly-chosen digits to x until it has m digits.
The basic idea is that after including all the digits that you must include, you can either "hug" the lower bound's digits for as long as you want, or "hug" the upper bound's digits for as long as you want, and as soon as you decide to stop "hugging", you can thereafter choose any digits you want. For suitable random choices, this procedure will generate all and only the numbers x such that b <= x <= e.
In the "usual" Levenshtein distance computation between two strings s and x, of lengths n and m respectively, we have a rectangular grid from (0, 0) to (n, m), and at each grid point (i, j) we record the Levenshtein distance between the prefix s[1..i] and the prefix x[1..j]. The score at (i, j) is calculated from the scores at (i-1, j), (i, j-1) and (i-1, j-1) using bottom-up dynamic programming. To adapt this to treat x as one of a set of possible strings (specifically, a digit string corresponding to a number between b and e) instead of a particular given string, what we need to do is record not one but two scores for each grid point: one for the case where we assume that the digit at position j was chosen to hug the lower bound, and one where we assume it was chosen to hug the upper bound. The 3rd possibility (step 5 above) doesn't actually require space in the DP matrix because we can work out the minimal Levenshtein distance for the entire rest of the input string immediately, very similar to the way we work it out for the "easy" subproblems in the first section.
Super-Levenshtein DP recursion
Call the overall minimal score at grid point (i, j) v(i, j). Let diff(a, b) = 1 if characters a and b are different, and 0 otherwise. Let inrange(a, b..c) be 1 if the character a is in the range b..c, and 0 otherwise. The calculations are:
# The best Lev distance overall between s[1..i] and x[1..j]
v(i, j) = min(hb(i, j), he(i, j))
# The best Lev distance between s[1..i] and x[1..j] obtainable by
# continuing to hug the lower bound
hb(i, j) = min(hb(i-1, j)+1, hb(i, j-1)+1, hb(i-1, j-1)+diff(s[i], b[j]))
# The best Lev distance between s[1..i] and x[1..j] obtainable by
# continuing to hug the upper bound
he(i, j) = min(he(i-1, j)+1, he(i, j-1)+1, he(i-1, j-1)+diff(s[i], e[j]))
At the point in time when v(i, j) is being calculated, we will also calculate the Levenshtein distance resulting from choosing to "stop hugging", i.e. by choosing a digit that is strictly in between b[j] and e[j] (if j == q) or (if j != q) is either above b[j] or below e[j], and thereafter freely choosing digits to make the suffix of x match the suffix of s as closely as possible:
# The best Lev distance possible between the ENTIRE STRINGS s and x, given that
# we choose to stop hugging at the jth digit of x, and have optimally aligned
# the first i digits of s to these j digits
sh(i, j) = if j >= q then shc(i, j)+abs(n-i-m+j)
else infinity
shc(i, j) = if j == q then
min(hb(i, j-1)+1, hb(i-1, j-1)+inrange(s[i], (b[j]+1)..(e[j]-1)))
else
min(hb(i, j-1)+1, hb(i-1, j-1)+inrange(s[i], (b[j]+1)..9),
he(i, j-1)+1, he(i-1, j-1)+inrange(s[i], (0..(e[j]-1)))
The formula for shc(i, j) doesn't need to consider "downward" moves, since such moves don't involve any digit choice for x.
The overall minimal Levenshtein distance is the minimum of v(n, m) and sh(i, j), for all 0 <= i <= n and 0 <= j <= m.
Complexity
Take N to be the largest number of digits in any of s, b or e. The original problem can be split in linear time into at most 1 set of easy problems that collectively takes O(1) time to solve and 2 hard subproblems that each take O(N^2) time to solve using the super-Levenshtein algorithm, so overall the problem can be solved in O(N^2) time, i.e. time proportional to the square of the number of digits.
A first idea to speed up the computation (works if |e-b| is not too large):
Question: how much can the Levestein distance change when we compare s with n and then with n+1?
Answer: not too much!
Let's see the dynamic-programming tables for s = 12007 and two consecutive n
n = 12296
0 1 2 3 4 5
1 0 1 2 3 4
2 1 0 1 2 3
3 2 1 1 2 3
4 3 2 2 2 3
5 4 3 3 3 3
and
n = 12297
0 1 2 3 4 5
1 0 1 2 3 4
2 1 0 1 2 3
3 2 1 1 2 3
4 3 2 2 2 3
5 4 3 3 3 2
As you can see, only the last column changes, since n and n+1 have the same digits, except for the last one.
If you have the dynamic-programming table for the edit-distance of s = 12001 and n = 12296, you already have the table for n = 12297, you just need to update the last column!
Obviously if n = 12299 then n+1 = 12300 and you need to update the last 3 columns of the previous table.. but this happens just once every 100 iteration.
In general, you have to
update the last column on every iterations (so, length(s) cells)
update the second-to-last too, once every 10 iterations
update the third-to-last, too, once every 100 iterations
so let L = length(s) and D = e-b. First you compute the edit-distance between s and b. Then you can find the minimum Levenstein distance over [b,e] looping over every integer in the interval. There are D of them, so the execution time is about:
Now since
we have an algorithm wich is

Resources