How to pin a interrupt to a CPU in driver - linux-kernel

Is it possible to pin a softirq, or any other bottom half to a processor. I have a doubt that this could be done from within a softirq code.
But then inside a driver is it possible to pin a particular IRQ to a
core.

From user mode, you can easily do this by writing to /proc/irq/N/smp_affinity to control which processor(s) an interrupt is directed to. The symbols for the code implementing this are not exported though, so it's difficult to do from the kernel (at least for a loadable module which is how most drivers are structured).
The fact that the implementing function symbols aren't exported is a sign that the kernel developers don't want to encourage this. Presumably that's because it takes control away from the user. And also embeds assumptions about number of processors and so forth into the driver.
So, to answer your question, yes, it's possible, but it's discouraged, and you would need to do one of several "ugly" things to implement it ((a) change kernel exports, (b) link your driver statically into main kernel, or (c) open/write to the proc file from kernel mode).
The usual way to achieve this is by writing a user-mode program (can even be a shell script) that programs core numbers/masks into the appropriate proc file. See Documentation/IRQ-affinity.txt in the kernel source directory for details.

Related

Linux kernel initialization - When are devicetree blobs parsed and tree nodes are loaded?

I would like to establish a milestone roadmap for Linux initialization for me to easily understand. (For an embedded system) Here is what I got:
Bootloader loads kernel to RAM and starts it
Linux kernel enters head.o, starts start_kernel()
CPU architecture is found, MMU is started.
setup_arch() is called, setting CPU up.
Kernel subsystems are loaded.
do_initcalls() is called and modules with *_initcall() and module_init() functions are started.
Then /sbin/init (or alike) is run.
I don't know when exactly devicetree is processed here. Is it when do_initcall() functions are beings processed or is it something prior to that?
In general when devicetree is parsed, and when tree nodes are processed?
Thank you very much in advance.
Any correction to my thoughts are highly appreciated.
It's a good question.
Firstly, I think you already know that the kernel will use data in the DT to identify the specific machine, in case of general use across different platform or hardware, we need it to establish in the early boot so that it has the opportunity to run machine-specific fixups.
Here is some information I digest from linux kernel documents.
In the majority of cases, the machine identity is irrelevant, and the kernel will instead select setup code based on the machine’s core CPU or SoC. On ARM for example, setup_arch() in arch/arm/kernel/setup.c will call setup_machine_fdt() in arch/arm/kernel/devtree.c which searches through the machine_desc table and selects the machine_desc which best matches the device tree data. It determines the best match by looking at the ‘compatible’ property in the root device tree node, and comparing it with the dt_compat list in struct machine_desc (which is defined in arch/arm/include/asm/mach/arch.h if you’re curious).
As for the Linux Initialization, I think there are something we can add in the list.
Put on START button, reset signal trigger
CS:IP fix to the BIOS 0XFFFF0 address
Jump to the start of BIOS
Self-check, start of hardware device like keyboard, real mode IDT & GDT
Load Bootloader like grub2 or syslinux.
Bootloader loads kernel to RAM and starts it (boot.img->core.img).
A20 Open, call setup.s, switch into protected mode
Linux kernel enters head.o, IDT & GDT refresh, decompress_kernel(), starts start_kernel()
INIT_TASK(init_task) create
trap_init()
CPU architecture is found, MMU is started (mmu_init()).
setup_arch() is called, setting CPU up.
Kernel subsystems are loaded.
do_initcalls() is called and modules with *_initcall() and module_init() functions are started.
rest_init() will create process 1 & 2, in other word, /sbin/init (or alike) and kthreadd is run.

What are allowed and not allowed to do in a linux Device Driver?

I have a general question about linux device driver. More often I get confused which actions are allowed or not allowed to perform in a linux device driver?
Is there any rules or kind of lookup list to follow?
for instance with the following examples, which are not allowable?
msleep(1000);
al = kmallock(sizeof(val));
printk(KERN_ALERT "faild to print\n";
ret = adc_get_val()*0.001;
In linux device driver programming it depends in which context you are. There are two contexts that need to be distinguished:
process context
IRQ context.
Sleeping can only be done while in process context or you schedule the work for later execution (there are several mechanism available to do that). This is a complex topic that cannot be described in a paragraph.
Allocating memory can sleep, it depends with which parameters/flags kmalloc is invoked.
print can always be called (once the kernel has been invoked), otherwise use early_printk.
I don't know what the function add_get_val does. It is not part of the linux kernel. And as has already been commented, float values cannot be easily used in the kernel.

What is a TRAMPOLINE_ADDR for ARM and ARM64(aarch64)?

I am writing a basic check-pointing mechanism for ARM64 using PTrace in order to do so I am using some code from cryopid and I found a TRAMPOLINE_ADDR macro like the following:
#define TRAMPOLINE_ADDR 0x00800000 /* 8MB mark */ for x86
#define TRAMPOLINE_ADDR 0x00300000 /* 3MB mark */ for x86_64
So when I read about trampolines it is something related to jump statements. But my questions is from where the above values came and what would the corresponding values for the ARM and ARM64 platform.
Thank you
Just read the wikipedia page.
There is nothing magic about a trampoline or certainly a particular address, any address where you can have code that executes can hold a trampoline. there are many use cases for them...for example
say you are booting off of a flash, a spi flash, running at some safe rate so that the chip boots for all users. But you want to increase the rate of the spi flash and the spi peripheral does not allow you to change while executing code. So you would copy some code to ram, that code boosts the spi flash rate to a faster rate so you can use and/or run the flash faster, then you bounce back to running from the flash. you have bounced or trampolined off of that little bit of code in ram.
you have a chip that boots from flash, but has the ability to re-map that address space to ram for example, so you copy some code to some other ram, branch to it that little bit of trampoline code remaps the address space, then bounces you back or bounces you to where the flash is now mapped to or whatever.
you will see the gnu linker sometimes add a small trampoline, say you compile some modules as thumb and some others for arm, you no longer have to use that interwork thing, the linker takes care of cleaning this up, it may add an instruction or two to trampoline you between modes, sometimes it modifies the code to just go where it needs to sometimes it modifies the code to branch link somewhere close and that somewhere close is a trampoline.
I assume there may be a need to do the same thing for aarch64 if/when switching to that mode.
so there should be no magic. your specific application might have one or many trampolines, and the one you are interested might not even be called that, but is probably application specific, absolutely no reason why there would be one address for everyone, unless it is some very rigid operating specific (again "application specific") thing and one specific trampoline for that operating system is at some DEFINEd address.

Linux kernel code space write protection

I had couple of questions on linux kernel memory page write protection.
How can i figure out if the kernel
code (text segment) is write
protected or not. I can look at
/proc/<process-id>/map to see the
memory map for various processes.
But not sure where to look for the
kernel code memory map.
If the kernel code segment is write
protected, then is it possible for
the code segment pages to be
overwritten by any other kernel
level code. In other words, does the
write protect on a text segment page
protects against only the user space
code writing to it or will it
prevent writes even from within the
kernel space code.
Thanks
Code running in the kernel has direct access to the page tables for the current address space, so it can check for write access by examining those. There are probably functions to help you with that check, but I'm not familiar enough with the mm code to point them out. Is there an easier way? I'm not sure.
The kernel text should never be writable from user-space. The text can additionally be protected against writing from kernel code too (I think this is what you're talking about). This is only a basic protection against bugs. Kernel code, if it really wants to, can disable that protection by modifying the page tables directly.
There is one paper talking about that. Basically, it uses a small hypervisor to protect the OS kernel.
SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes.
http://www.sosp2007.org/papers/sosp079-seshadri.pdf

How does Windows protect transition into kernel mode?

How does Windows protect against a user-mode thread from arbitrarily transitioning the CPU to kernel-mode?
I understand these things are true:
User-mode threads DO actually transition to kernel-mode when a system call is made through NTDLL.
The transition to kernel-mode is done through processor-specific instructions.
So what is special about these system calls through NTDLL? Why can't the user-mode thread fake-it and execute the processor-specific instructions to transition to kernel-mode? I know I'm missing some key piece of Windows architecture here...what is it?
You're probably thinking that thread running in user mode is calling into Ring 0, but that's not what's actually happening. The user mode thread is causing an exception that's caught by the Ring 0 code. The user mode thread is halted and the CPU switches to a kernel/ring 0 thread, which can then inspect the context (e.g., call stack and registers) of the user mode thread to figure out what to do. Before syscall, it really was an exception rather than a special exception specifically to invoke ring 0 code.
If you take the advice of the other responses and read the Intel manuals, you'll see syscall/sysenter don't take any parameters - the OS decides what happens. You can't call arbitrary code. WinNT uses function numbers that map to which kernel mode function the user mode code will execute (for example, NtOpenFile is fnc 75h on my Windows XP machine (the numbers change all the time; it's one of the jobs of NTDll is to map a function call to a fnc number, put it in EAX, point EDX to the incoming parameters then invoke sysenter).
Intel CPUs enforce security using what's called 'Protection Rings'.
There are 4 of these, numbered from 0 to 3. Code running in ring 0 has the highest privileges; it can (practically) do whatever it pleases with your computer. The code in ring 3, on the other hand, is always on a tight leash; it has only limited powers to influence things. And rings 1 and 2 are currently not used for any purpose at all.
A thread running in a higher privileged ring (such as ring 0) can transition to lower privilege ring (such as ring 1, 2 or 3) at will. However, the transition the other way around is strictly regulated. This is how the security of high privileged resources (such as memory) etc. is maintained.
Naturally, your user mode code (applications and all) runs in ring 3 while the OS's code runs in ring 0. This ensures that the user mode threads can't mess with the OS's data structures and other critical resources.
For details on how all this is actually implemented you could read this article. In addition, you may also want to go through Intel Manuals, especially Vol 1 and Vol 3A, which you can download here.
This is the story for Intel processors. I'm sure other architectures have something similar going on.
I think (I may be wrong) that the mechanism which it uses for transition is simple:
User-mode code executes a software interrupt
This (interrupt) causes a branch to a location specified in the interrupt descriptor table (IDT)
The thing that prevents user-mode code from usurping this is as follows: you need to be priviledged to write to the IDT; so only the kernel is able to specify what happens when an interrupt is executed.
Code running in User Mode (Ring 3) can't arbitrarily change to Kernel Mode (Ring 0). It can only do so using special routes -- jump gates, interrupts, and sysenter vectors. These routes are highly protected and input is scrubbed so that bad data can't (shouldn't) cause bad behavior.
All of this is set up by the kernel, usually on startup. It can only be configured in Kernel Mode so User-Mode code can't modify it.
It's probably fair to say that it does it in a (relatively) similar way to what Linux does. In both cases it's going to be CPU-specific, but on x86 probably either a software interrupt with the INT instruction, or via SYSENTER instruction.
The advantage of looking at how Linux does it is that you can do so without a Windows source licence.
The userspace source part is here here at LXR and the
kernel space bit - look at entry_32.S and entry_64.S
Under Linux on x86 there are three different mechanisms, int 0x80, syscall and sysenter.
A library which is built at runtime by the kernel called vdso is called by the C library to implement the syscall function, which uses a different mechanism depending on the CPU and which system call it is. The kernel then has handlers for those mechanisms (if they exist on the specific CPU variant).

Resources