Getting pixel location given its value - image

is it possible in matlab to get the location of a pixel(rows and column) if the value at that pixel location is known?
Thanks in advance.
Regards

You can use find to get the coordinates of the pixel
[y x] = find( grayImg == val, 1 ); %// find one pixel that has intensity val
For RGB image, you need three values
[y x] = find( rgbImg(:,:,1) == r_val & rgbImg(:,:,2) == g_val & rgbImg(:,:,3) == b_val, 1 )
In case of single precision image, one might find the comparison == too strict (see, e.g. this thread). Therefore, a relaxed version can be applied:
thresh = 1e-5;
[row col] = find( abs( grayImg - val ) < thresh, 1 );
To find a pixel within thresh tolerance of val.
You may also try and find the pixel with value closest to val:
[~, lidx] = min( abs( grayImg(:) - val ) );
[row col] = ind2sub( size(grayImg), lidx );

Related

K-means for image compression only gives black-and-white result

I'm doing this exercise by Andrew NG about using k-means to reduce the number of colors in an image. But the problem is my code only gives a black-and-white image :( . I have checked every step in the algorithm but it still won't give the correct result. Please help me, thank you very much
Here is the link of the exercise, and here is the dataset.
The correct result is given in the link of the exercise. And here is my black-and-white image:
Here is my code:
function [] = KMeans()
Image = double(imread('bird_small.tiff'));
[rows,cols, RGB] = size(Image);
Points = reshape(Image,rows * cols, RGB);
K = 16;
Centroids = zeros(K,RGB);
s = RandStream('mt19937ar','Seed',0);
% Initialization :
% Pick out K random colours and make sure they are all different
% from each other! This prevents the situation where two of the means
% are assigned to the exact same colour, therefore we don't have to
% worry about division by zero in the E-step
% However, if K = 16 for example, and there are only 15 colours in the
% image, then this while loop will never exit!!! This needs to be
% addressed in the future :(
% TODO : Vectorize this part!
done = false;
while done == false
RowIndex = randperm(s,rows);
ColIndex = randperm(s,cols);
RowIndex = RowIndex(1:K);
ColIndex = ColIndex(1:K);
for i = 1 : K
for j = 1 : RGB
Centroids(i,j) = Image(RowIndex(i),ColIndex(i),j);
end
end
Centroids = sort(Centroids,2);
Centroids = unique(Centroids,'rows');
if size(Centroids,1) == K
done = true;
end
end;
% imshow(imread('bird_small.tiff'))
%
% for i = 1 : K
% hold on;
% plot(RowIndex(i),ColIndex(i),'r+','MarkerSize',50)
% end
eps = 0.01; % Epsilon
IterNum = 0;
while 1
% E-step: Estimate membership given parameters
% Membership: The centroid that each colour is assigned to
% Parameters: Location of centroids
Dist = pdist2(Points,Centroids,'euclidean');
[~, WhichCentroid] = min(Dist,[],2);
% M-step: Estimate parameters given membership
% Membership: The centroid that each colour is assigned to
% Parameters: Location of centroids
% TODO: Vectorize this part!
OldCentroids = Centroids;
for i = 1 : K
PointsInCentroid = Points((find(WhichCentroid == i))',:);
NumOfPoints = size(PointsInCentroid,1);
% Note that NumOfPoints is never equal to 0, as a result of
% the initialization. Or .... ???????
if NumOfPoints ~= 0
Centroids(i,:) = sum(PointsInCentroid , 1) / NumOfPoints ;
end
end
% Check for convergence: Here we use the L2 distance
IterNum = IterNum + 1;
Margins = sqrt(sum((Centroids - OldCentroids).^2, 2));
if sum(Margins > eps) == 0
break;
end
end
IterNum;
Centroids ;
% Load the larger image
[LargerImage,ColorMap] = imread('bird_large.tiff');
LargerImage = double(LargerImage);
[largeRows,largeCols,~] = size(LargerImage); % RGB is always 3
% Dist = zeros(size(Centroids,1),RGB);
% TODO: Vectorize this part!
% Replace each of the pixel with the nearest centroid
for i = 1 : largeRows
for j = 1 : largeCols
Dist = pdist2(Centroids,reshape(LargerImage(i,j,:),1,RGB),'euclidean');
[~,WhichCentroid] = min(Dist);
LargerImage(i,j,:) = Centroids(WhichCentroid);
end
end
% Display new image
imshow(uint8(round(LargerImage)),ColorMap)
imwrite(uint8(round(LargerImage)), 'D:\Hoctap\bird_kmeans.tiff');
You're indexing into Centroids with a single linear index.
Centroids(WhichCentroid)
This is going to return a single value (specifically the red value for that centroid). When you assign this to LargerImage(i,j,:), it will assign all RGB channels the same value resulting in a grayscale image.
You likely want to grab all columns of the selected centroid to provide an array of red, green, and blue values that you want to assign to LargerImage(i,j,:). You can do by using a colon : to specify all columns of Centroids which belong to the row indicated by WhichCentroid.
LargerImage(i,j,:) = Centroids(WhichCentroid,:);

K-means for color quantization - Code not vectorized

I'm doing this exercise by Andrew NG about using k-means to reduce the number of colors in an image. It worked correctly but I'm afraid it's a little slow because of all the for loops in the code, so I'd like to vectorize them. But there are those loops that I just can't seem to vectorize effectively. Please help me, thank you very much!
Also if possible please give some feedback on my coding style :)
Here is the link of the exercise, and here is the dataset.
The correct result is given in the link of the exercise.
And here is my code:
function [] = KMeans()
Image = double(imread('bird_small.tiff'));
[rows,cols, RGB] = size(Image);
Points = reshape(Image,rows * cols, RGB);
K = 16;
Centroids = zeros(K,RGB);
s = RandStream('mt19937ar','Seed',0);
% Initialization :
% Pick out K random colours and make sure they are all different
% from each other! This prevents the situation where two of the means
% are assigned to the exact same colour, therefore we don't have to
% worry about division by zero in the E-step
% However, if K = 16 for example, and there are only 15 colours in the
% image, then this while loop will never exit!!! This needs to be
% addressed in the future :(
% TODO : Vectorize this part!
done = false;
while done == false
RowIndex = randperm(s,rows);
ColIndex = randperm(s,cols);
RowIndex = RowIndex(1:K);
ColIndex = ColIndex(1:K);
for i = 1 : K
for j = 1 : RGB
Centroids(i,j) = Image(RowIndex(i),ColIndex(i),j);
end
end
Centroids = sort(Centroids,2);
Centroids = unique(Centroids,'rows');
if size(Centroids,1) == K
done = true;
end
end;
% imshow(imread('bird_small.tiff'))
%
% for i = 1 : K
% hold on;
% plot(RowIndex(i),ColIndex(i),'r+','MarkerSize',50)
% end
eps = 0.01; % Epsilon
IterNum = 0;
while 1
% E-step: Estimate membership given parameters
% Membership: The centroid that each colour is assigned to
% Parameters: Location of centroids
Dist = pdist2(Points,Centroids,'euclidean');
[~, WhichCentroid] = min(Dist,[],2);
% M-step: Estimate parameters given membership
% Membership: The centroid that each colour is assigned to
% Parameters: Location of centroids
% TODO: Vectorize this part!
OldCentroids = Centroids;
for i = 1 : K
PointsInCentroid = Points((find(WhichCentroid == i))',:);
NumOfPoints = size(PointsInCentroid,1);
% Note that NumOfPoints is never equal to 0, as a result of
% the initialization. Or .... ???????
if NumOfPoints ~= 0
Centroids(i,:) = sum(PointsInCentroid , 1) / NumOfPoints ;
end
end
% Check for convergence: Here we use the L2 distance
IterNum = IterNum + 1;
Margins = sqrt(sum((Centroids - OldCentroids).^2, 2));
if sum(Margins > eps) == 0
break;
end
end
IterNum;
Centroids ;
% Load the larger image
[LargerImage,ColorMap] = imread('bird_large.tiff');
LargerImage = double(LargerImage);
[largeRows,largeCols,NewRGB] = size(LargerImage); % RGB is always 3
% TODO: Vectorize this part!
largeRows
largeCols
NewRGB
% Replace each of the pixel with the nearest centroid
NewPoints = reshape(LargerImage,largeRows * largeCols, NewRGB);
Dist = pdist2(NewPoints,Centroids,'euclidean');
[~,WhichCentroid] = min(Dist,[],2);
NewPoints = Centroids(WhichCentroid,:);
LargerImage = reshape(NewPoints,largeRows,largeCols,NewRGB);
% for i = 1 : largeRows
% for j = 1 : largeCols
% Dist = pdist2(Centroids,reshape(LargerImage(i,j,:),1,RGB),'euclidean');
% [~,WhichCentroid] = min(Dist);
% LargerImage(i,j,:) = Centroids(WhichCentroid,:);
% end
% end
% Display new image
imshow(uint8(round(LargerImage)),ColorMap)
UPDATE: Replaced
for i = 1 : K
for j = 1 : RGB
Centroids(i,j) = Image(RowIndex(i),ColIndex(i),j);
end
end
with
for i = 1 : K
Centroids(i,:) = Image(RowIndex(i),ColIndex(i),:);
end
I think this may be vectorized further by using linear indexing, but for now I should just focus on the while loop since it takes most of the time.
Also when I tried #Dev-iL's suggestion and replaced
for i = 1 : K
PointsInCentroid = Points((find(WhichCentroid == i))',:);
NumOfPoints = size(PointsInCentroid,1);
% Note that NumOfPoints is never equal to 0, as a result of
% the initialization. Or .... ???????
if NumOfPoints ~= 0
Centroids(i,:) = sum(PointsInCentroid , 1) / NumOfPoints ;
end
end
with
E = sparse(1:size(WhichCentroid), WhichCentroid' , 1, Num, K, Num);
Centroids = (E * spdiags(1./sum(E,1)',0,K,K))' * Points ;
the results were always worse: With K = 16, the first takes 2,414s , the second takes 2,455s ; K = 32, the first takes 4,529s , the second takes 5,022s. Seems like vectorization does not help, but maybe there's something wrong with my code :( .
Replaced
for i = 1 : K
for j = 1 : RGB
Centroids(i,j) = Image(RowIndex(i),ColIndex(i),j);
end
end
with
for i = 1 : K
Centroids(i,:) = Image(RowIndex(i),ColIndex(i),:);
end
I think this may be vectorized further by using linear indexing, but for now I should just focus on the while loop since it takes most of the time.
Also when I tried #Dev-iL's suggestion and replaced
for i = 1 : K
PointsInCentroid = Points((find(WhichCentroid == i))',:);
NumOfPoints = size(PointsInCentroid,1);
% Note that NumOfPoints is never equal to 0, as a result of
% the initialization. Or .... ???????
if NumOfPoints ~= 0
Centroids(i,:) = sum(PointsInCentroid , 1) / NumOfPoints ;
end
end
with
E = sparse(1:size(WhichCentroid), WhichCentroid' , 1, Num, K, Num);
Centroids = (E * spdiags(1./sum(E,1)',0,K,K))' * Points ;
the results were always worse: With K = 16, the first takes 2,414s , the second takes 2,455s ; K = 32, the first took 4,529s , the second took 5,022s. Seems like vectorization did not help in this case.
However, when I replaced
Dist = pdist2(Points,Centroids,'euclidean');
[~, WhichCentroid] = min(Dist,[],2);
(in the while loop) with
Dist = bsxfun(#minus,dot(Centroids',Centroids',1)' / 2 , Centroids * Points' );
[~, WhichCentroid] = min(Dist,[],1);
WhichCentroid = WhichCentroid';
the code ran much faster, especially when K is large (K=32)
Thank you everyone!

Implement Adaptive watershed segmentation in Matlab

I will like to implement "Adaptive Watershed Segmentation" in Matlab.
There are six steps in this algorithm. Input is figure(a) and result is figure(d).
Would you please to help me check is there any mistake in my code, and I don't know how to implement the sixth step.
Thank you so much!
Load image:
input_image = imread('test.gif');
Step 1 : Calculate D(x,y) at each (x,y), obtain the Euclidian distance map of the binary image and assign each value of M(x,y) as 0.
DT = bwdist(input_image,'euclidean'); % Trandform distance:Euclidian distance
[h,w]=size(DT);
M = zeros(h,w);
Step 2 : Smooth the distance map using Gaussian filter to merge the adjacent maxima, set M(x,y) as 1 if D(x,y) is a local maximum, and then obtain the marker map of the distance map.
H = fspecial('gaussian');
gfDT = imfilter(DT,H);
M = imregionalmax(gfDT); % maker map, M = local maximum of gfDT
Step3 : Scan the marker map pixel by pixel. If M(x0,y0) is 1, seek the spurious maxima in its neighbourhood with a radius of D(x ,y ).When M(x,y) equals 1 and sqr((x − x0)^2 + (y − y0)^2 ) ≤ D(x0, y0) , set M(x,y) as 0 if D(x,y) < D(x0,y0).
for x0 = 1:h
for y0 = 1:w
if M(x0,y0) == 1
r = ceil(gfDT(x0,y0));
% range begin:(x0-r,y0-r) end:(x0+r,y0+r)
xb = x0-r;
if xb <= 0
xb =1;
end
yb = y0-r;
if yb <= 0
yb =1;
end
xe = x0+r;
if xe > w
xe = w;
end
ye = y0+r;
if ye > h
ye = h;
end
for x = yb:ye
for y = xb:xe
if M(x,y)==1
Pos = [x0,y0 ;x,y];
Dis = pdist(Pos,'euclidean');
IFA = Dis<= (gfDT(x0,y0));
IFB = gfDT(x,y)<gfDT(x0,y0);
if ( IFA && IFB)
M(x,y) = 0;
end
end
end
end
end
end
end
Step 4:
Calculate the inverse of the distance map,and the local maxima turn out to be the local minima.
igfDT = -(gfDT);
STep5:
Segment the distance map according to the markers by the conventional watershed algorithm and obtain the segmentation of binary image.
I2 = imimposemin(igfDT,M);
L = watershed(I2);
igfDT (L==0)=0;
Step 6 : Straighten the watershed lines by linking the ends of the watershed lines with a straight line and reclassifying the pixels along the straight line.
I don't know how to implement this step
Try distance transform and then watershed transform.
im=imread('n6BRI.gif');
imb=bwdist(im);
sigma=3;
kernel = fspecial('gaussian',4*sigma+1,sigma);
im2=imfilter(imb,kernel,'symmetric');
L = watershed(max(im2(:))-im2);
[x,y]=find(L==0);
lblImg = bwlabel(L&~im);
figure,imshow(label2rgb(lblImg,'jet','k','shuffle'));

Convert RGB to HSV

i want to convert RGB values to HSV values . But if I devide 9 by 28, octave calculate 0. Can anyone explain me the reason??
function [hsv] = RGBtoHSV()
im = imread('picture.png');
R = im(:,:,1);
G = im(:,:,2);
B = im(:,:,3);
len = length(R); % R, G, B should have the same length
for i = 1:len
MAX = max([R(i),G(i),B(i)]);
MIN = min([R(i),G(i),B(i)]);
S = 0;
if MAX == MIN
H = 0;
elseif MAX == R(i)
disp(G(i) - B(i)); % 9
disp(MAX - MIN); % 28
H = 0.6 * ( 0 + ( (G(i) - B(i)) / MAX - MIN) ); % 0
disp(H) % why i get 0 if try to calculate ( 0 + ( (G(i) - B(i)) / MAX - MIN)?
....
end
return;
end
endfunction
RGBtoHSV()
Chris :D
You must cast the image into Double by doing:
im = double(imread('picture.png'));
This will solve your issues which happens since the image is type UINT8.
You can also use Octave's builtin rgb2hsv function instead of writing your own.
im_rgb = imread ("picture.png");
im_hsv = rgb2hsv (im_rgb);
If this is an exercise, then I'd suggest you look at its source, enter type rgb2hsv at the Octave prompt, and see how its implemented.

How to calculate center of gravity in grid?

Given a grid (or table) with x*y cells. Each cell contains a value. Most of these cells have a value of 0, but there may be a "hot spot" somewhere on this grid with a cell that has a high value. The neighbours of this cell then also have a value > 0. As farer away from the hot spot as lower the value in the respective grid cell.
So this hot spot can be seen as the top of a hill, with decreasing values the farer we are away from this hill. At a certain distance the values drop to 0 again.
Now I need to determine the cell within the grid that represents the grid's center of gravity. In the simple example above this centroid would simply be the one cell with the highest value. However it's not always that simple:
the decreasing values of neighbour cells around the hot spot cell may not be equally distributed, or a "side of the hill" may fall down to 0 sooner than another side.
there is another hot spot/hill with values > 0 elsewehere within the grid.
I could think that this is kind of a typical problem. Unfortunately I am no math expert so I don't know what to search for (at least I have not found an answer in Google).
Any ideas how can I solve this problem?
Thanks in advance.
You are looking for the "weighted mean" of the cell values. Assuming each cell has a value z(x,y), then you can do the following
zx = sum( z(x, y) ) over all values of y
zy = sum( z(x, y) ) over all values of x
meanX = sum( x * zx(x)) / sum ( zx(x) )
meanY = sum( y * zy(y)) / sum ( zy(y) )
I trust you can convert this into a language of your choice...
Example: if you know Matlab, then the above would be written as follows
zx = sum( Z, 1 ); % sum all the rows
zy = sum( Z, 2 ); % sum all the columns
[ny nx] = size(Z); % find out the dimensions of Z
meanX = sum((1:nx).*zx) / sum(zx);
meanY = sum((1:ny).*zy) / sum(zy);
This would give you the meanX in the range 1 .. nx : if it's right in the middle, the value would be (nx+1)/2. You can obviously scale this to your needs.
EDIT: one more time, in "almost real" code:
// array Z(N, M) contains values on an evenly spaced grid
// assume base 1 arrays
zx = zeros(N);
zy = zeros(M);
// create X profile:
for jj = 1 to M
for ii = 1 to N
zx(jj) = zx(jj) + Z(ii, jj);
next ii
next jj
// create Y profile:
for ii = 1 to N
for jj = 1 to M
zy(ii) = zy(ii) + Z(ii, jj);
next jj
next ii
xsum = 0;
zxsum = 0;
for ii = 1 to N
zxsum += zx(ii);
xsum += ii * zx(ii);
next ii
xmean = xsum / zxsum;
ysum = 0;
zysum = 0;
for jj = 1 to M
zysum += zy(jj);
ysum += jj * zy(ii);
next jj
ymean = ysum / zysum;
This Wikipedia entry may help; the section entitled "A system of particles" is all you need. Just understand that you need to do the calculation once for each dimension, of which you apparently have two.
And here is a complete Scala 2.10 program to generate a grid full of random integers (using dimensions specified on the command line) and find the center of gravity (where rows and columns are numbered starting at 1):
object Ctr extends App {
val Array( nRows, nCols ) = args map (_.toInt)
val grid = Array.fill( nRows, nCols )( util.Random.nextInt(10) )
grid foreach ( row => println( row mkString "," ) )
val sum = grid.map(_.sum).sum
val xCtr = ( ( for ( i <- 0 until nRows; j <- 0 until nCols )
yield (j+1) * grid(i)(j) ).sum :Float ) / sum
val yCtr = ( ( for ( i <- 0 until nRows; j <- 0 until nCols )
yield (i+1) * grid(i)(j) ).sum :Float ) / sum
println( s"Center is ( $xCtr, $yCtr )" )
}
You could def a function to keep the calculations DRYer, but I wanted to keep it as obvious as possible. Anyway, here we run it a couple of times:
$ scala Ctr 3 3
4,1,9
3,5,1
9,5,0
Center is ( 1.8378378, 2.0 )
$ scala Ctr 6 9
5,1,1,0,0,4,5,4,6
9,1,0,7,2,7,5,6,7
1,2,6,6,1,8,2,4,6
1,3,9,8,2,9,3,6,7
0,7,1,7,6,6,2,6,1
3,9,6,4,3,2,5,7,1
Center is ( 5.2956524, 3.626087 )

Resources