I'm confused what effect changing the camera.up vector has in three.js.
In this jsfiddle, I have camera.up = new THREE.Vector3(0, 0, 1);, but it doesn't look any different then the default y up vector. What does camera.up do?
If you use functions like Camera.lookAt(), it will use the up vector to correctly orient the camera.
(extending kintel's answer) If you use functions like camera.lookAt(), it will use the up vector to correctly orient the camera. so if camera.up.set(0,1,0), it would mean that y-axis is going vertically up in the screen and x and z axes align accordingly.
I have also uploaded an example in this site here. Initially camera.up.set(0,1,0) is true, now play with buttons to see camera.up.set in action. find the code here.
Related
I need to get the camera up direction and i've tried many ways with no luck, i'm not an expert of quaternions so i'm doubting i did it right.
I've tried:
camera.up
camera.up.applyMatrix4(camera.matrixWorld);
new THREE.Vertex3(0,1,0).applyMatrix4(camera.matrixWorld);
camera.up.normalize().applyMatrix4(camera.matrixWorld);
after this i create two planes passing by two points of my interest, and add the plane helper to the scene and i can see they are very far from where i was expecting them. (i'm expecting two planes that looks like the top and bottom of the camera frustum).
P.s. the camera is a shadow camera of a directional light so an orthographic camera, and i manipulate the directional light position and target before doing this operation, but i've called updateMatrixWorld on the light, on it's target and the camera, on the camera i've called also updateProjectionMatrix... still no results
I've made a sandbox to see what i've tried till now, and better visualize what i want to achieve:
https://codesandbox.io/embed/throbbing-cache-j5yse
once i manage to get the green arrow to point to the top of the blue triangle of the camera helper i'm good to go
In the normal render flow, shadow camera matrices are updated as part of rendering the shadow map (WebGLShadowMap.render).
However, if you want the updated matrix values before the render, then you'll need to update them manually (you already understand this part).
The shadow camera is a property of (not a child of) the DirectionalLight. As such, it doesn't follow the same rules as other scene objects when it comes to updating its matrices (because it's not really a child of the scene). Instead, you need to call the shadow property's updateMatrices method (inherited from LightShadow.updateMatrices).
const dl = new THREE.DirectionalLight(0xffffff, 1)
dl.shadow.updateMatrices(dl) // <<------------------------ Updates the shadow camera
This updates the shadow camera with information from the DirectionalLight's own matrix, and its target's matrix, to properly orient the shadow camera.
Finally, it looks like you're trying to get the "world up" of the camera. Personally, I'd use the convenience function localToWorld:
let up = new THREE.Vector3(0, 1, 0)
dl.shadow.camera.localToWorld(up) // destructively converts "up" from local-to-camera into world coordinates
via trial and errors i've figured out that what gave me the correct result was:
calling
directionalLight.shadow.updateMatrices(...)
and then
new THREE.Vector3(0,1,0).applyQuaternion(directionalLight.shadow.camera.quaternion)
Let's say I have a vertical list of meshes created from PlaneBufferGeometry with ShaderMaterial. The meshes are distributed vertically and evenly spaced.
The list will have two states:
Displaying the meshes as they are
Displaying meshes with each object's vertices transformed by the vertex shader to the same arbitrary value, let's say z = -50. This gives a zoomed out effect and the user can scroll through this list (in the code we do this by moving the camera y position)
In my app I'm trying to make my mouseover events work for the second state but it's tricky since the GPU transforms the vertices so the updated vertices are not reflected in the attributes on the JS side.
*Note I've looked into GPU picking and do not want to use it because I believe there should be a simpler way to do this without render targets
Attempted Solution
My current approach is to manually change the boundingBox of each plane when we are in the second state like so:
var box = new THREE.Box3().setFromObject(plane);
box.min.z = -50;
box.max.z = -50;
plane.geometry.boundingBox = box;
And then to change the boundingSphere's center to have the same z position of -50 after computing it.
I did this approach because I looked into the Raycaster and Mesh code for THREE.js and it seems like they check both boundingSphere and boundingBox for object intersections. So I thought if I modified both of them to reflect the transforms done by the GPU, the raycaster would work fine but it doesn't seem to be working for me.
The relevant raycaster code is here:
// mouse being vec2 of normalized coordinates and camera being a perspective camera
raycaster.setFromCamera( mouse, camera );
const intersects = raycaster.intersectObjects( planes );
Possible Theories
The only thing I can think of that's wrong about this approach is maybe I'm not projecting the mouse coords right? Since all the objects now lie on the plane z = -50 would I need to project those mouse coordinates to that plane?
Inspired by the link posted by #prisoner849 I found a working solution to just create additional transparent planes equal to the number of planes in the scene. In these planes, I set the z position to -50 and just intersect with these when in state #2.
A bit hacky, but works for now.
It seems possible to flip an axes of an orthographic camera in three, e.g. by the following code:
var tmp = camera.right;
camera.right = camera.left;
camera.left = tmp;
camera.updateProjectionMatrix();
However, this screws up the lighting, so it seems to not be supported (at least not with built in materials). Is this so? Is there another way to achieve this?
The use case I currently have is a scientific scene (loads of spheres and lines) that can be seen from either positive or negative Z direction. The requirement is that the X and Y axis point the same direction (e.g. right and up) no matter which Z-direction you are looking in. Is there an alternative solution if flipping left/right is not the way to go?
For an example of what I am talking about, see this fiddle: https://jsfiddle.net/mt0bpwcz/1/ Try double clicking the scene to switch the camera. Afterwards the lighting will be very strange (especially visible in the specular highlights).
I'm trying to make a Plane to always face the camera or another moving object but I want the Plane to only rotate on 1 axis. How can I use the lookAt function to make it only rotate side ways without tilting to look up or down at the moving object?
thanks, I managed to solve it easily by just keeping the y position of the rotating object constant.
if(planex){
var yaw_control = controls.getYawObject();
pos = new THREE.Vector3( yaw_control.position.x, planex.position.y, yaw_control.position.z );
planex.lookAt(pos);
}
http://www.lighthouse3d.com/opengl/billboarding/index.php?billCyl
maybe this article of any help for you. You are looking for those cylindrical billboards i think but read up from the first page ;) You can modify the specific mesh matrix yourself, although i am not sure if this is the most efficient way. I also did this myself once.
Get the camera look vec:
three.js set and read camera look vector
Then get the camera upVec and afterwards get the cross prodcut of those = rightVec according to the article above.
using those vectors, you can fill in a new Three.Matrix4() like explained in the article and then replace the meshes matrix with the newly created one. As I said, i am not quite into the matrix stuff in three.js but this works but it is probably not that efficient.
For this to work you will have to deactive the meshes auto matrix update with
mesh.matrixAutoUpdate = false;
Context: trying to take THREE.js and use it to display conic sections.
Method: creating a mesh of vertices and then connect face4's to all of them. Used two faces to produce a front and back side so that when the conic section rotates it won't matter from which angle the camera views it.
Problems encountered: 1. Trying to find a good way to create a intuitive mouse rotation scheme. If you think in spherical coordinates, then it feels like just making up/down change phi and left/right change phi would work. But that requires that you can move the camera. As far as I can tell, there is no way to change actively change the rotation of anything besides the objects. Does anyone know how to change the rotation of the camera or scene? 2. Is there a way to graph functions that is better than creating a mesh? If the mesh has many points then it is too slow, and if the mesh has few points then you cannot easily make out the shape of the conic sections.
Any sort of help would be most excellent.
I'm still starting to learn Three.js, so I'm not sure about the second part of your question.
For the first part, to change the camera, there is a very good way, which could also include zooming and moving the scene: the trackball camera.
For the exact code and how to use it, you can view:
https://github.com/mrdoob/three.js/blob/master/examples/webgl_trackballcamera_earth.html
At the botton of this page (http://mrdoob.com/122/Threejs) you can see the example in action (the globe in the third row from the bottom).
There is an orbit control script for the three.js camera.
I'm not sure if I understand the rotation bit. You do want to rotate an object, but you are correct, the rotation is relative.
When you rotate or move your camera, a matrix is calculated for that position/rotation, and it does indeed rotate the scene while keeping the camera static.
This is irrelevant though, because you work in model/world space, and you position your camera in it, the engine takes care of the rotations under the hood.
What you probably want is to set up an object, hook up your rotation with spherical coordinates, and link your camera as a child to this object. The translation along the cameras Z axis relative to the object should mimic your dolly (zoom is FOV change).
You can rotate the camera by changing its position. See the code I pasted here: https://gamedev.stackexchange.com/questions/79219/three-js-camera-turning-leftside-right
As others are saying OrbitControls.js is an intuitive way for users to manage the camera.
I tackled many of the same issues when building formulatoy.net. I used Morphing Geometries since I found mapping 3d math functions to a UV surface to require v little code and it allowed an easy way to implement different coordinate systems (Cartesian, spherical, cylindrical).
You could use particles instead of a mesh I suppose but a mesh seems best. The lattice material is not too useful if you're trying to understand a surface mathematically. At this point I'm thinking of drawing my own X,Y lines on the surface (or phi, theta lines etc) to better demonstrate cross-sections.
Hope that helps.
You can use trackball controls by which you can zoom in and out of an object,rotate the object,pan it.In trackball controls you are moving the camera around the object.Object still rotates with respect to the screen or renderer centre (0,0,0).