Software Engineering UML - the use of "include" and "extend" - include

I am currently modelling a system that I propose to implement
One feature or functionality is for the user to browse for music. But then they could also search for it - so does it mean that the search for use case include from browse music use case?
Thanks

Ah, my favorite ...
No, it does not include it. Search music is a single UC (it delivers a list of music titles). Browse music is no UC in contrast. It's simply an action you take (maybe at the end of Search music). A use case must deliver some added value. Just browsing is not really added value (ok, one can start arguing here - but ...).

Related

dynamically classify categories

I am new at the idea of programming algorithms. I can work with simplistic ideas, but my current project requires that I create something a bit more complicated.
I'm trying to create a categorization system based on keywords and subsets of 'general' categories that filter down into more detailed categories that requires as little work as possible from the user.
I.E.
Sports >> Baseball >> Pitching >> Nolan Ryan
So, if a user decides they want to talk about "Baseball" and they filter the search, I would like to also include 'Sports"
User enters: "baseball"
User is then taken to Sports >> Baseball
Now I understand that this would be impossible without a living - breathing dynamic program that connects those two categories in some way. It would also require 'some' user input initially, and many more inputs throughout the lifetime of the software in order to maintain it and keep it up to date.
But Alas, asking for such an algorithm would be frivolous without detailing very concrete specifics about what I'm trying to do. And i'm not trying to ask for a hand out.
Instead, I am curious if people are aware of similar systems that have already been implemented and if there is documentation out there describing how it has been done. Or even some real life examples of your own projects.
In short, I have a 'plan' but it requires more user input than I really want. I feel getting more info on the subject would be the best course of action before jumping head first into developing this program.
Thanks
IMHO It isn't as hard as you think. What you want is called Tagging and you can do it Automatically just by setting the correlation between tags (i.e. a Tag can have its meaningful information plus its reation with other ones. Then, if user select a Tag well, you related that with others via looking your ADT collection (can be as simple as an array).
Tag:
Sport
Related Tags
Football
Soccer
...
I'm hoping this helps!
It sounds like what you want to do is create a tree/menu structure, and then be able to rapidly retrieve the "breadcrumb" for any given key in the tree.
Here's what I would think:
Create the tree with all the branches. It's okay if you want branches to share keys - as long as you can give the user a "choice" of "Multiple found, please choose which one... ?"
For every key in the tree, generate the breadcrumb. This is time-consuming, and if the tree is very large and updating regularly then it may be something better done offline, in the cloud, or via hadoop, etc.
Store the key and the breadcrumb in a key/value store such as redis, or in memory/cached as desired. You'll want every value to have an array if you want to share keys across categories/branches.
When the user selects a key - the key is looked up in the store, and if the resulting value contains only one match, then you simply construct the breadcrumb to take the user where you want them to go. If it has multiple, you give them a choice.
I would even say, if you need something more organic, say a user can create "new topic" dynamically from anywhere else, then you might want to not use a tree at all after the initial import - instead just update your key/value store in real-time.

text mining/analyse user commands/questions algorithm or library

I got a financial application and I wish to add to it the ability to get user command or input in textbox and then take the right action. for example, wish the user to write "show the revenue in the last 10 days" and it'll show the revenue to him/her - the point is that I wish it to really understand the meaning of the question, so the previus statement will bring the same results as "do I got any revenue in the last 10 days" or something like that - BI (something like the Wolfram|Alpha engine).
I wonder if there's any opensource library or algorithm books or whatever that I can use to learn the subject. Regards to opensource libraries - I don't mind which language it'll be written in.
I've read about this subject and saw many engines and services (OpenNLP, Apache UIMA, CoreNLP etc.) but did not figure out if they're right for my needs.
Any answer or suggestion is welcome.
Many thanks!
The field you're talking about is usually called "natural language processing". It's hard, and an active field of research. There are various libraries which you could consider based on your preferred programming language and use case:
http://en.wikipedia.org/wiki/List_of_natural_language_processing_toolkits
I've used NLTK a little bit. This field is seriously difficult to get right, so you might want to try to restrict your application to some small set of verbs and nouns such that people are using a controlled vocabulary in the first instance, and then try to extend it beyond that.

Use case diagrams use of <<extend>>

in my system "compare modifications" and "save image" are optional activities. but they are presented to the user. user may or may not use them. is this the correct form showing the scenario in use case diagram? Imstill new to UML , if I'mnot wrong i think extend keyword can be used to show optional activities.
Are Save Image and Compare Modifications separate use cases? If they are i wonder what user scenario they describe?Too generic IMHO. But i dont know the domain under study so cant really drive my point there. Extend is applied to scenarios where extending use cases are specialized versions of the parent use cases. So to translate that into your scenario, whenever the actor encounters Save Image functionality(assuming Save Image has some real business functionality rather than just a Save Image screen) he might choose to Store the image to disk(and thereby execute Store Image to Disk's Normal Flow, Alternative flow,BRs etc) or he might not, in which case the flow might continue with Save Image use case's Alternative Flow(AFs). If my assumptions are right, then the answer to your questions is YES.
<<extend>> use cases are used when you want to provide point in a use case where you can later add new functionality, and not to show optional operations.
Any use case can be optional, they only show functionality that the system provides to the user and do not show ordering or causality. The <<include>> use cases do show some causality relation but this is also minor and nor compulsory.
In the most simple terms Includes is something which is mandatory and Extends is optional, this is a very simple explanation which helped me understand.

How can I do "related tags"?

I have tags on my website, and I input them one by one when I create a blog post. I love gmail's new feature, that ask you if you want to include X in a mail, if you type Y's name and that you often include both of them in the same messages.
I'd like to do something similar on my website, but I don't know how to represent the tags "related-ness" in an object or database ... thoughts ?
It all boils down to create associations between certain characteristics of your posts and certain tags, and then - when you press the "publish" button - to analyse the new post and propose all tags matched with your post characteristics.
This can be done in several ways from a "totally hard-coded" association to some sort of "learning AI"... and everything in-between.
Hard-coded solutions
This are the simplest algorithms to implement. You should first decide what characteristics of your post are relevant for tagging (e.g.: it's length if you tag them "short" or "long", the presence of photos or videos if you tag them "multimedia-content", etc...). The most obvious is however to focus on which words are used in posts. For example you could build a mapping like this:
tag_hint_words = {'code-development' : ['programming',
'language', 'python', 'function',
'object', 'method'],
'family' : ['Theresa', 'kids',
'uncle Ben', 'holidays']}
Then you would check your post for the presence of the words in the list (the code between [ and ] ) and propose the tag (the word before :) as a possible candidate.
A common approach is to give "scores", or in other word to put a number that indicates the probability a given tag is the right one. For example: if your post would contain the sentence...
After months of programming, we finally left for the summer holidays at uncle Ben's cottage. Theresa and the kids were ecstatic!
...despite the presence of the word "programming" the program should indicate family as the most likely tag to use, as there are many more words hinting.
Learning AI's
One of the obvious limitations of the above method is that - say one day you pick up java beside python - you would probably need to change your code and include words like "java" or "oracle" too. The same applies if you create new tags.
To circumvent this limitation (and have some fun!!) you could try to implement a learning algorithm. Learning algorithms are those who refine their outcome the more you use them (so they indeed... learn!). Some algorithm requires initial training (many spam filters and voice recognition programs need this initial "primer"). Some don't.
I am absolutely no expert on the subject, but two common AI's are: the Naive Bayes Classifier and some flavour of Neural network.
Although the WP pages might look scary, they are surprisingly easy to implement (at least in Python). Here's the recording of a lecture at PyCon 2009 on the subject "Easy AI with Python". I found it very informative and even somehow inspiring! :)
HTH!
You should have a look at this post :
Any suggestions for a db schema for storing related keywords?
If you're looking for a schema for storing related tags it will help.
Relevancy searches where multiple agents play a part are usually done using Collaborative filtering. You might want to give that a look see.
Look up Clustering (Machine Learning algorithm). Don't be intimidated by math, it's a pretty straightforward algorithm. Check out Machine Learning for Hackers for simpler explanations of many Machine Learning algorithms and methods.

Best UI for Search/Filter/Boolean expression

There are some simple ones, some complex ones, but I cannot find the gold standard.
Can anyone point me to "the best" way to let a user define a search criteria (or filter) to retrieve results?
This is complicated since:
Need to support about 10 different types of elements
Support And, Or, Not
Parenthesis (a killer to 95% of the population)
As an example I looked at MorningStar premium fund filter, it is ok but not web2.0 (ajax, JQuery.. in other words, not cool) and it handles parenthesis poorly.
Check Smart Playlists in iTunes. I find this UI very clear.
Finder in OS X has similar GUI, but also allows nested "parentheses" by pressing Alt and (+)/(-).

Resources