Term for simulation data structure - data-structures

I've seen a data structure before used for simulation, but I'm unsure of any keywords to find more information about it.
The data structure is basically a "sign up sheet" for objects to receive updates as time goes on. It's similar to an Observer pattern. My plan is to use it for objects in a game to update ever couple of seconds rather than every tick.
Is there a name for this particular data structure, or if not, how can I implement something like this optimally?

Perhaps you're thinking of the "listener pattern" described in the paper Building Complex Models with LEGOS (Listener Event Graph Objects)?

Related

What would be the preferred data structure for a graphql resolver to return the counts of ratings?

View :
Json that I return from the graphql field resolver.
The json is direct response of the sql query:
The front-end dev says the following:
To which I responded:
I feel this is case of overengineering and it is the responsibility of view to convert and use the data according to their view needs. I understand the need of caching the counts to optimize the query response and it has nothing to do with the arrray vs json format. The front-end dev wasn't convinced by my response and thinks this will cause performance issue and I'm failing to understand it and he has asked me to seek opinions from the stackoverflow community. Your enlightenment on this would be appreciated. I'd learn something out of it maybe. :)
For the small amount of data like this, it's not a issue from view side to render. As per my perspective for the object and array structures, One should go for the object case in these scenarios. because currently ratings are displayed by stars, what if in the future it will be converted into graphs or other kind of representations.
In those cases the change will be required from both side as you have tightly coupled your view into server side logic. If you go with object, that will be only from view side and server will be independent from view.
Not only objects give you decouple environment, but in the future if you want to add some extra information, it will be easy for both the views. currently it's only number specific, what if in the future, view needs more information based on some profile like users, areas, eventually you will need to convert that into these structures. so, It would be more fruitful if you go with objects.
From the front side, if you want to optimize you can use memorize function with dependencies or normalization of objects, which will help the view to not the process that
much.
For the logic of reducer function to convert them into array, it's some what over operations, assuming find method does linear scan and your data is sorted so, find method quite reaches to 15 for five data(best case). You can go with sorting, it's roughly completes to 11, and you get more efficiency and scalability compare to normal array. since most of the sorting methods accept custom function to sort.
Any correction or other more options would be highly appreciated.

Amount of properties per command/event in event sourcing

I'm learning cqrs/event sourcing, and recently I listen some speach and speaker told that you need pass as few parameters to event as possible, in other words to make events tiny as possible. The main reason for that is it's impossible to change events later as it will break the event history, and its easelly to design small events correctly. But what if for example in UI you need fill in for example form with 10 fields to create new aggregate, and same situation can be with updating the aggregate? How to be in such a case? And how to be if business later consider to change something, but we have huge event which updating 10 fields?
The decision is always context-specific and each case deserves its own review of using thin events vs fat events.
The motivation for using thin domain events is to include just enough information that is required to ensure the state transition.
As for fat events, your projections might require a piece of entity state to avoid using any logic in the projection itself (best practice).
For integration, you'd prefer emitting fat events because you hardly know who will consume your event. Still, the content of the event should convey the information related to the meaning of the event itself.
References:
Putting your events on a diet
Patterns for Decoupling in Distributed Systems: Fat Event
recently I listen some speach and speaker told that you need pass as few parameters to event as possible, in other words to make events tiny as possible.
I'm not convinced that holds up. If you are looking for good ides about designing events, you should review Greg Young's e-book on versioning.
If you are event sourcing, then you are primarily concerned with ensuring that your stream of events allows you to recreate the state of your domain model. The events themselves should be representations of changes that a domain expert will recognize. If you find yourself trying to invent smaller events just to fit some artificial constraint like "no more than three properties per event" then you are going to end up with data that doesn't really match the way your domain experts think -- which is to say, technical debt.

What does data look like when using Event Sourcing?

I'm trying to understand how Event Sourcing changes the data architecture of a service. I've been doing a lot of research, but I can't seem to understand how data is supposed to be properly stored with event sourcing.
Let's say I have a service that keeps track of vehicles transporting packages. The current non relational structure for the data model is that each document represents a vehicle, and has many fields representing origin location, destination location, types of packages, amount of packages, status of the vehicle, etc. Normally this gets queried for information to be read to the front end. When changes are made by the user, the appropriate changes are made to this document in order to update this.
With event sourcing, it seems that a snapshot of every event is stored, but there seem to be a few ways to interpret that:
The first is that the multiple versions of the document I described exist, each a new snapshot every time a change is made. Each event would create a new version of this document and alter it. This is the easiest way for me to wrap my head around it, but I believe this to be incorrect.
Another interpretation I have is that each event stores SPECIFIC information about what's been altered in the document. When the vehicle status changes from On Road to Available, for example, an event specifically for vehicle status changes is triggered. Let's say it's called VehicleStatusUpdatedEvent, and contains the Vehicle ID number, the new status, and the timestamp for this event. So this event is stored and is published to a messaging queue. When picked up from the queue, the appropriate changes are made to the current version of the document. I can understand this, but I think I still have some misconceptions here. My understanding is that event sourcing allows us to have a snapshot of data upon each change, so we can know what it looks like at any point. What I just described would keep a log of changes, but still only have one version of the file, as the events only contain specific pieces of the whole file.
Can someone describe how the data flow and architecture works with event sourcing? Using the vehicle data example I provided might help me frame it better. I feel that I am close to understanding this, but I am missing some fundamental pieces that I can't seem to understand by searching online.
The current non relational structure for the data model is that each document represents a vehicle
OK, let's start from there.
In the data model you've described, storage of a document destroys the earlier copy.
Now imagine that instead we were storing the the document in a git repository. Then then saving the document would also save metadata, and that metadata would include a pointer to the previous document.
Of course, we've probably got a lot of duplication in that case. So instead of storing the complete document every time, we'll store a patch document (think JSON Patch), and metadata pointing to the original patch.
Take that same idea again, but instead of storing generic patch documents, we use domain specific messages that describe what is going on in terms of the model.
That's what the data model of an event sourced entity looks like: a list of domain specific descriptions of document transformations.
When you need to reconstitute the current state, you start with a state you know (which could be the "null" state of the document before anything happened to it, and replay onto that document all of the patches (events) that have occurred since.
If you want to do a temporal query, the game is the same, you replay the events up to the point in time that you are interested in.
So essentially when referring to an older build, you reconstruct the document using the events, correct?
Yes, that's exactly right.
So is there still a "current status" document or is that considered bad practice?
"It depends". In the general case, there is no current status document; only the write-ordered list of events is "real", and everything else is derived from that.
Conversations about event sourcing often lead to consideration of dedicated message stores for managing persistence of those ordered lists, and it is common that the message stores do not also support document storage. So trying to keep a "current version" around would require commits to two different stores.
At this point, designers typically either decide that "recent version" is good enough, in which case they build eventually consistent representations of documents outside of the transaction boundary... OR they decide current version is important, and look into storage solutions that support storing the current version in the same transaction as the events (ex: using an RDBMS).
what is the procedure used to generate the snapshot you want using the events?
IF you want to generate a snapshot, then you'll normally end up using a pattern called a projection, to iterate over the events and either fold or reduce them to create the document.
Roughly, you have a function somewhere that looks like
document-with-meta-data = projection(event-history-with-metadata)

Event model or schema in event store

Events in an event store (event sourcing) are most often persisted in a serialized format with versions to represent a changed in the model or schema for an event type. I haven't been able to find good documentation showing the actual model or schema for an actual event (often data table in event store schema if using a RDBMS) but understand that ideally it should be generic.
What are the most basic fields/properties that should exist in an event?
I've contemplated using json-api as a specification for my events but perhaps that's too "heavy". The benefits I see are flexibility and maturity.
Am I heading down the "wrong path"?
Any well defined examples would be greatly appreciated.
I've contemplated using json-api as a specification for my events but perhaps that's too "heavy". The benefits I see are flexibility and maturity.
Am I heading down the "wrong path"?
Don't overlook forward and backward compatibility.
You should plan to review Greg Young's book on event versioning; it doesn't directly answer your question, but it does cover a lot about the basics of interpreting an event.
Short answer: pretty much everything is optional, because you need to be able to change it later.
You should also review Hohpe's Enterprise Integration Patterns, in particular his work on messaging, which details a lot of cases you may care about.
de Graauw's Nobody Needs Reliable Messaging helped me to understan an important point.
To summarize: if reliability is important on the business level, do it on the business level.
So while there are some interesting bits of meta data tracking that you may want to do, the domain model is really only going to look at the data; and that is going to tend to be specific to your domain.
You also have the fun that the representation of events that you use in the service that produces them may not match the representation that it shares with other services, and in particular may not be the same message that gets broadcast.
I worked through an exercise trying to figure out what the minimum amount of information necessary for a subscriber to look at an event to understand if it cares. My answers were an id (have I seen this specific event before?), a token that tells you the semantic meaning of the message (is that something I care about?), and a location (URI) to get a richer representation if it is something I care about.
But outside of the domain -- for example, when you are looking at the system as a whole trying to figure out what is going on, having correlation identifiers and causation identifiers, time stamps, signatures of the source location, and so on stored in a consistent location in the meta data can be a big help.
Just modelling with basic types that map to Json to write as you would for an API can go a long way.
You can spend a lot of time generating overly complex models if you throw too much tooling at it - things like Apache Thrift and/or Protocol Buffers (or derived things) will provide all sorts of IDL mechanisms for you to generate incidental complexity with.
In .NET land and many other platforms, if you namespace the types you can do various projections from the types
Personally, I've used records and DUs in F# as a design and representation tool
you get intellisense, syntax hilighting, and types you can use from F# or C# for free
if someone wants to look, types.fs has all they need

Bootstrapping complex data sets

The application I am working on has "Default lists" one of which is already created in the app currently. The list has events and events touch 2-3 other models. Which would make seeding, etc very time consuming due to the complexity of the lists and the associated models the list has data in
Due to the complexity of the lists I would prefer to build the lists though the UI and then extracting it for later use.
Is there any worthwhile way of extracting the aforementioned list object and for lack of a better term "bootstrap it"
Thanks for your help in advance.
I think what you are trying to get at is seed data. Take a look at this railscats on just that.
Solution: https://github.com/rhalff/seed_dump
I highly enjoy the comments on the github page
It mainly exists for people who are too lazy writing create statements
in db/seeds.rb themselves and need something (seed_dump) to dump data
from the table(s) into seeds.rb
My response to that is "work smart, not hard" no need for me to spend a day or 2 writing out long seeds instead of doing actual work.
Unless i'm hungover then i'll just pretend seed_dump is on the fritz ;)

Resources