Biggest diameter of a set with a distance function - algorithm

I have a set of elements with a distance function between elements satisfying the triangle inequality.
I want to find the pair of elements separated by the greatest distance.
Is there any known solution better than trying all pairs?

If you measure the distance from point a to points b, c and d, and you find that |ab| + |ac| < |ad|, then you know that |bc| is shorter than |ad|, and there's no need to measure |bc|. So not all pairs need to be checked to find the longest distance.
A possible algorithm would be:
Start by measuring the distance from point a to all other points, find the point n which is furthest away from a, and then give all pairs b,x for which |ab|+|ax| < |an| the distance |ab|+|ax| (because that is their maximum possible distance).
Do the same for point b, measuring only those distances which haven't yet been set. Check if you've found a new maximum, and then again give all pairs c,x for which |bc|+|bx| < MAX the distance |bc|+|bx|.
Go on doing this for points c, d, ...
In the best case scenario, you could find the longest distance in a set of N points after just N-1 measurements (if |ax| is twice as long as any other distance from a). In the worst case, you would need to measure every single pair (if the shortest distance is more than half of the longest distance, or if you are unlucky in the order in which you run through the points).
If you want to reduce the number of distance measurements to the absolute minimum, and for every unknown distance x,y you check every previously stored value |ax|+|ay|, |bx|+|by|, |cx|+|cy| ... to see whether it's smaller than the current maximum and can thus be used as a value for |xy|, the number of measurements is reduced substantially.
Running this algorithm on 1000 random points in a square 2D space, which would normally require 499,500 measurements, returns the maximum distance with between 2,000 and 10,000 measurements (or between 0.4% and 2% of the total, with an average around 1%).
This doesn't necessarily mean that the algorithm is much faster in practice than measuring every distance; that depends on how expensive the measuring is compared to the combination of loops, additions and comparisons required to avoid the measurements.
As #mcdowella pointed out, this method becomes less efficient as the number of dimensions of the space increases. The number of points also has a big impact. The table below shows the number of measurements that have to be carried out in relation to the total number of pairs. These are averages from a test with randomly distributed points in a "square" space (i.e. the coordinates in all dimensions are within the same range). As you can see, this method makes most sense for geometrical problems with many points in a 2D or 3D space. However, if your data is highly biased in some way, the results may be different.
10 points (45 pairs) 100 points (4950 pairs) 1000 points (499500 pairs)
dim measurem. % of total measurem. % of total measurem. % of total
1 16.6674 37.04 221.17 4.47 4877.97 0.98
2 22.4645 49.92 346.77 7.01 5346.78 1.07
3 27.5892 61.31 525.73 10.62 7437.16 1.49
4 31.9398 70.98 731.83 14.78 12780.02 2.56
5 35.3313 78.51 989.27 19.99 19457.84 3.90
6 38.1420 84.76 1260.89 25.47 26360.16 5.28
7 40.2296 89.40 1565.80 31.63 33221.32 6.65
8 41.6864 92.64 1859.08 37.56 44073.42 8.82
9 42.7149 94.92 2168.03 43.80 56374.36 11.29
10 43.4463 96.55 2490.69 50.32 73053.06 14.63
20 44.9789 99.95 4617.41 93.28 289978.20 58.05
30 44.9996 99.999 4936.68 99.73 460056.04 92.10
40 4949.79 99.99 496893.10 99.48
50 4949.99 99.9999 499285.80 99.96
60 499499.60 99.9999
As expected, the results of the tests become predictable at higher dimensions, with only a few percent between the outliers, while in 2D some test cases required 30 times more measurements than others.

Related

Is it better to reduce the space complexity or the time complexity for a given program?

Grid Illumination: Given an NxN grid with an array of lamp coordinates. Each lamp provides illumination to every square on their x axis, every square on their y axis, and every square that lies in their diagonal (think of a Queen in chess). Given an array of query coordinates, determine whether that point is illuminated or not. The catch is when checking a query all lamps adjacent to, or on, that query get turned off. The ranges for the variables/arrays were about: 10^3 < N < 10^9, 10^3 < lamps < 10^9, 10^3 < queries < 10^9
It seems like I can get one but not both. I tried to get this down to logarithmic time but I can't seem to find a solution. I can reduce the space complexity but it's not that fast, exponential in fact. Where should I focus on instead, speed or space? Also, if you have any input as to how you would solve this problem please do comment.
Is it better for a car to go fast or go a long way on a little fuel? It depends on circumstances.
Here's a proposal.
First, note you can number all the diagonals that the inputs like on by using the first point as the "origin" for both nw-se and ne-sw. The diagonals through this point are both numbered zero. The nw-se diagonals increase per-pixel in e.g the northeast direction, and decreasing (negative) to the southwest. Similarly ne-sw are numbered increasing in the e.g. the northwest direction and decreasing (negative) to the southeast.
Given the origin, it's easy to write constant time functions that go from (x,y) coordinates to the respective diagonal numbers.
Now each set of lamp coordinates is naturally associated with 4 numbers: (x, y, nw-se diag #, sw-ne dag #). You don't need to store these explicitly. Rather you want 4 maps xMap, yMap, nwSeMap, and swNeMap such that, for example, xMap[x] produces the list of all lamp coordinates with x-coordinate x, nwSeMap[nwSeDiagonalNumber(x, y)] produces the list of all lamps on that diagonal and similarly for the other maps.
Given a query point, look up it's corresponding 4 lists. From these it's easy to deal with adjacent squares. If any list is longer than 3, removing adjacent squares can't make it empty, so the query point is lit. If it's only 3 or fewer, it's a constant time operation to see if they're adjacent.
This solution requires the input points to be represented in 4 lists. Since they need to be represented in one list, you can argue that this algorithm requires only a constant factor of space with respect to the input. (I.e. the same sort of cost as mergesort.)
Run time is expected constant per query point for 4 hash table lookups.
Without much trouble, this algorithm can be split so it can be map-reduced if the number of lampposts is huge.
But it may be sufficient and easiest to run it on one big machine. With a billion lamposts and careful data structure choices, it wouldn't be hard to implement with 24 bytes per lampost in an unboxed structures language like C. So a ~32Gb RAM machine ought to work just fine. Building the maps with multiple threads requires some synchronization, but that's done only once. The queries can be read-only: no synchronization required. A nice 10 core machine ought to do a billion queries in well less than a minute.
There is very easy Answer which works
Create Grid of NxN
Now for each Lamp increment the count of all the cells which suppose to be illuminated by the Lamp.
For each query check if cell on that query has value > 0;
For each adjacent cell find out all illuminated cells and reduce the count by 1
This worked fine but failed for size limit when trying for 10000 X 10000 grid

How to find all the binary string of length 9, having 4 ones and rest zeroes and hamming distance of 4 (if we consider any two strings) [duplicate]

Problem:
Given a large (~100 million) list of unsigned 32-bit integers, an unsigned 32-bit integer input value, and a maximum Hamming Distance, return all list members that are within the specified Hamming Distance of the input value.
Actual data structure to hold the list is open, performance requirements dictate an in-memory solution, cost to build the data structure is secondary, low cost to query the data structure is critical.
Example:
For a maximum Hamming Distance of 1 (values typically will be quite small)
And input:
00001000100000000000000001111101
The values:
01001000100000000000000001111101
00001000100000000010000001111101
should match because there is only 1 position in which the bits are different.
11001000100000000010000001111101
should not match because 3 bit positions are different.
My thoughts so far:
For the degenerate case of a Hamming Distance of 0, just use a sorted list and do a binary search for the specific input value.
If the Hamming Distance would only ever be 1, I could flip each bit in the original input and repeat the above 32 times.
How can I efficiently (without scanning the entire list) discover list members with a Hamming Distance > 1.
Question: What do we know about the Hamming distance d(x,y)?
Answer:
It is non-negative: d(x,y) ≥ 0
It is only zero for identical inputs: d(x,y) = 0 ⇔ x = y
It is symmetric: d(x,y) = d(y,x)
It obeys the triangle inequality, d(x,z) ≤ d(x,y) + d(y,z)
Question: Why do we care?
Answer: Because it means that the Hamming distance is a metric for a metric space. There are algorithms for indexing metric spaces.
Metric tree (Wikipedia)
BK-tree (Wikipedia)
M-tree (Wikipedia)
VP-tree (Wikipedia)
Cover tree (Wikipedia)
You can also look up algorithms for "spatial indexing" in general, armed with the knowledge that your space is not Euclidean but it is a metric space. Many books on this subject cover string indexing using a metric such as the Hamming distance.
Footnote: If you are comparing the Hamming distance of fixed width strings, you may be able to get a significant performance improvement by using assembly or processor intrinsics. For example, with GCC (manual) you do this:
static inline int distance(unsigned x, unsigned y)
{
return __builtin_popcount(x^y);
}
If you then inform GCC that you are compiling for a computer with SSE4a, then I believe that should reduce to just a couple opcodes.
Edit: According to a number of sources, this is sometimes/often slower than the usual mask/shift/add code. Benchmarking shows that on my system, a C version outperform's GCC's __builtin_popcount by about 160%.
Addendum: I was curious about the problem myself, so I profiled three implementations: linear search, BK tree, and VP tree. Note that VP and BK trees are very similar. The children of a node in a BK tree are "shells" of trees containing points that are each a fixed distance from the tree's center. A node in a VP tree has two children, one containing all the points within a sphere centered on the node's center and the other child containing all the points outside. So you can think of a VP node as a BK node with two very thick "shells" instead of many finer ones.
The results were captured on my 3.2 GHz PC, and the algorithms do not attempt to utilize multiple cores (which should be easy). I chose a database size of 100M pseudorandom integers. Results are the average of 1000 queries for distance 1..5, and 100 queries for 6..10 and the linear search.
Database: 100M pseudorandom integers
Number of tests: 1000 for distance 1..5, 100 for distance 6..10 and linear
Results: Average # of query hits (very approximate)
Speed: Number of queries per second
Coverage: Average percentage of database examined per query
-- BK Tree -- -- VP Tree -- -- Linear --
Dist Results Speed Cov Speed Cov Speed Cov
1 0.90 3800 0.048% 4200 0.048%
2 11 300 0.68% 330 0.65%
3 130 56 3.8% 63 3.4%
4 970 18 12% 22 10%
5 5700 8.5 26% 10 22%
6 2.6e4 5.2 42% 6.0 37%
7 1.1e5 3.7 60% 4.1 54%
8 3.5e5 3.0 74% 3.2 70%
9 1.0e6 2.6 85% 2.7 82%
10 2.5e6 2.3 91% 2.4 90%
any 2.2 100%
In your comment, you mentioned:
I think BK-trees could be improved by generating a bunch of BK-trees with different root nodes, and spreading them out.
I think this is exactly the reason why the VP tree performs (slightly) better than the BK tree. Being "deeper" rather than "shallower", it compares against more points rather than using finer-grained comparisons against fewer points. I suspect that the differences are more extreme in higher dimensional spaces.
A final tip: leaf nodes in the tree should just be flat arrays of integers for a linear scan. For small sets (maybe 1000 points or fewer) this will be faster and more memory efficient.
I wrote a solution where I represent the input numbers in a bitset of 232 bits, so I can check in O(1) whether a certain number is in the input. Then for a queried number and maximum distance, I recursively generate all numbers within that distance and check them against the bitset.
For example for maximum distance 5, this is 242825 numbers (sumd = 0 to 5 {32 choose d}). For comparison, Dietrich Epp's VP-tree solution for example goes through 22% of the 100 million numbers, i.e., through 22 million numbers.
I used Dietrich's code/solutions as the basis to add my solution and compare it with his. Here are speeds, in queries per second, for maximum distances up to 10:
Dist BK Tree VP Tree Bitset Linear
1 10,133.83 15,773.69 1,905,202.76 4.73
2 677.78 1,006.95 218,624.08 4.70
3 113.14 173.15 27,022.32 4.76
4 34.06 54.13 4,239.28 4.75
5 15.21 23.81 932.18 4.79
6 8.96 13.23 236.09 4.78
7 6.52 8.37 69.18 4.77
8 5.11 6.15 23.76 4.68
9 4.39 4.83 9.01 4.47
10 3.69 3.94 2.82 4.13
Prepare 4.1s 21.0s 1.52s 0.13s
times (for building the data structure before the queries)
For small distances, the bitset solution is by far the fastest of the four. Question author Eric commented below that the largest distance of interest would probably be 4-5. Naturally, my bitset solution becomes slower for larger distances, even slower than the linear search (for distance 32, it would go through 232 numbers). But for distance 9 it still easily leads.
I also modified Dietrich's testing. Each of the above results is for letting the algorithm solve at least three queries and as many queries as it can in about 15 seconds (I do rounds with 1, 2, 4, 8, 16, etc queries, until at least 10 seconds have passed in total). That's fairly stable, I even get similar numbers for just 1 second.
My CPU is an i7-6700. My code (based on Dietrich's) is here (ignore the documentation there at least for now, not sure what to do about that, but the tree.c contains all the code and my test.bat shows how I compiled and ran (I used the flags from Dietrich's Makefile)). Shortcut to my solution.
One caveat: My query results contain numbers only once, so if the input list contains duplicate numbers, that may or may not be desired. In question author Eric's case, there were no duplicates (see comment below). In any case, this solution might be good for people who either have no duplicates in the input or don't want or need duplicates in the query results (I think it's likely that the pure query results are only a means to an end and then some other code turns the numbers into something else, for example a map mapping a number to a list of files whose hash is that number).
A common approach (at least common to me) is to divide your bit string in several chunks and query on these chunks for an exact match as pre-filter step. If you work with files, you create as many files as you have chunks (e.g. 4 here) with each chunk permuted in front and then sort the files. You can use a binary search and you can even expand you search above and below a matching chunk for bonus.
You then can perform a bitwise hamming distance computation on the returned results which should be only a smaller subset of your overall dataset. This can be done using data files or SQL tables.
So to recap: Say you have a bunch of 32 bits strings in a DB or files and that you want to find every hash that are within a 3 bits hamming distance or less of your "query" bit string:
create a table with four columns: each will contain an 8 bits (as a string or int) slice of the 32 bits hashes, islice 1 to 4. Or if you use files, create four files, each being a permutation of the slices having one "islice" at the front of each "row"
slice your query bit string the same way in qslice 1 to 4.
query this table such that any of qslice1=islice1 or qslice2=islice2 or qslice3=islice3 or qslice4=islice4. This gives you every string that are within 7 bits (8 - 1) of the query string. If using a file, do a binary search in each of the four permuted files for the same results.
for each returned bit string, compute the exact hamming distance pair-wise with you query bit string (reconstructing the index-side bit strings from the four slices either from the DB or from a permuted file)
The number of operations in step 4 should be much less than a full pair-wise hamming computation of your whole table and is very efficient in practice.
Furthermore, it is easy to shard the files in smaller files as need for more speed using parallelism.
Now of course in your case, you are looking for a self-join of sort, that is all the values that are within some distance of each other. The same approach still works IMHO, though you will have to expand up and down from a starting point for permutations (using files or lists) that share the starting chunk and compute the hamming distance for the resulting cluster.
If running in memory instead of files, your 100M 32 bits strings data set would be in the range of 4 GB. Hence the four permuted lists may need about 16GB+ of RAM. Though I get excellent results with memory mapped files instead and must less RAM for similar size datasets.
There are open source implementations available. The best in the space is IMHO the one done for Simhash by Moz, C++ but designed for 64 bits strings and not 32 bits.
This bounded happing distance approach was first described AFAIK by Moses Charikar in its "simhash" seminal paper and the corresponding Google patent:
APPROXIMATE NEAREST NEIGHBOR SEARCH IN HAMMING SPACE
[...]
Given bit vectors consisting of d bits each, we choose
N = O(n 1/(1+ ) ) random permutations of the bits. For each
random permutation σ, we maintain a sorted order O σ of
the bit vectors, in lexicographic order of the bits permuted
by σ. Given a query bit vector q, we find the approximate
nearest neighbor by doing the following:
For each permutation σ, we perform a binary search on O σ to locate the
two bit vectors closest to q (in the lexicographic order obtained by bits permuted by σ). We now search in each of
the sorted orders O σ examining elements above and below
the position returned by the binary search in order of the
length of the longest prefix that matches q.
Monika Henziger expanded on this in her paper "Finding near-duplicate web pages: a large-scale evaluation of algorithms":
3.3 The Results for Algorithm C
We partitioned the bit string of each page into 12 non-
overlapping 4-byte pieces, creating 20B pieces, and computed the C-similarity of all pages that had at least one
piece in common. This approach is guaranteed to find all
pairs of pages with difference up to 11, i.e., C-similarity 373,
but might miss some for larger differences.
This is also explained in the paper Detecting Near-Duplicates for Web Crawling by Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma:
THE HAMMING DISTANCE PROBLEM
Definition: Given a collection of f -bit fingerprints and a
query fingerprint F, identify whether an existing fingerprint
differs from F in at most k bits. (In the batch-mode version
of the above problem, we have a set of query fingerprints
instead of a single query fingerprint)
[...]
Intuition: Consider a sorted table of 2 d f -bit truly random fingerprints. Focus on just the most significant d bits
in the table. A listing of these d-bit numbers amounts to
“almost a counter” in the sense that (a) quite a few 2 d bit-
combinations exist, and (b) very few d-bit combinations are
duplicated. On the other hand, the least significant f − d
bits are “almost random”.
Now choose d such that |d − d| is a small integer. Since
the table is sorted, a single probe suffices to identify all fingerprints which match F in d most significant bit-positions.
Since |d − d| is small, the number of such matches is also
expected to be small. For each matching fingerprint, we can
easily figure out if it differs from F in at most k bit-positions
or not (these differences would naturally be restricted to the
f − d least-significant bit-positions).
The procedure described above helps us locate an existing
fingerprint that differs from F in k bit-positions, all of which
are restricted to be among the least significant f − d bits of
F. This takes care of a fair number of cases. To cover all
the cases, it suffices to build a small number of additional
sorted tables, as formally outlined in the next Section.
Note: I posted a similar answer to a related DB-only question
You could pre-compute every possible variation of your original list within the specified hamming distance, and store it in a bloom filter. This gives you a fast "NO" but not necessarily a clear answer about "YES."
For YES, store a list of all the original values associated with each position in the bloom filter, and go through them one at a time. Optimize the size of your bloom filter for speed / memory trade-offs.
Not sure if it all works exactly, but seems like a good approach if you've got runtime RAM to burn and are willing to spend a very long time in pre-computation.
How about sorting the list and then doing a binary search in that sorted list on the different possible values within you Hamming Distance?
One possible approach to solve this problem is using a Disjoint-set data structure. The idea is merge list members with Hamming distance <= k in the same set. Here is the outline of the algorithm:
For each list member calculate every possible value with Hamming distance <= k. For k=1, there are 32 values (for 32-bit values). For k=2, 32 + 32*31/2 values.
For each calculated value, test if it is in the original input. You can use an array with size 2^32 or a hash map to do this check.
If the value is in the original input, do a "union" operation with the list member.
Keep the number of union operations executed in a variable.
You start the algorithm with N disjoint sets (where N is the number of elements in the input). Each time you execute an union operation, you decrease by 1 the number of disjoint sets. When the algorithm terminates, the disjoint-set data structure will have all the values with Hamming distance <= k grouped in disjoint sets. This disjoint-set data structure can be calculated in almost linear time.
Here's a simple idea: do a byte-wise radix sort of the 100m input integers, most significant byte first, keeping track of bucket boundaries on the first three levels in some external structure.
To query, start with a distance budget of d and your input word w. For each bucket in the top level with byte value b, calculate the Hamming distance d_0 between b and the high byte of w. Recursively search that bucket with a budget of d - d_0: that is, for each byte value b', let d_1 be the Hamming distance between b' and the second byte of w. Recursively search into the third layer with a budget of d - d_0 - d_1, and so on.
Note that the buckets form a tree. Whenever your budget becomes negative, stop searching that subtree. If you recursively descend into a leaf without blowing your distance budget, that leaf value should be part of the output.
Here's one way to represent the external bucket boundary structure: have an array of length 16_777_216 (= (2**8)**3 = 2**24), where the element at index i is the starting index of the bucket containing values in range [256*i, 256*i + 255]. To find the index one beyond the end of that bucket, look up at index i+1 (or use the end of the array for i + 1 = 2**24).
Memory budget is 100m * 4 bytes per word = 400 MB for the inputs, and 2**24 * 4 bytes per address = 64 MiB for the indexing structure, or just shy of half a gig in total. The indexing structure is a 6.25% overhead on the raw data. Of course, once you've constructed the indexing structure you only need to store the lowest byte of each input word, since the other three are implicit in the index into the indexing structure, for a total of ~(64 + 50) MB.
If your input is not uniformly distributed, you could permute the bits of your input words with a (single, universally shared) permutation which puts all the entropy towards the top of the tree. That way, the first level of pruning will eliminate larger chunks of the search space.
I tried some experiments, and this performs about as well as linear search, sometimes even worse. So much for this fancy idea. Oh well, at least it's memory efficient.

Algorithm for categorizing values

What would be the best algorithm to solve this problem? I spent a couple of hours on this problem. But couldn't sort it out.
A guy purchased a necklace and planned to make it into two pieces in such a way that the average brightness of each piece should be either greater than or equal to the original piece.
The criteria for dividing the necklaces are
1.The difference in number of pearls between the two pearls sets should not be greater than 10% of the number of pearls in the original necklace or 3 whichever is higher.
2.The difference between number of pearls in 2 necklaces should be minimum.
3.In case if the average brightness of any one of the necklace is less than the average brightness of the original set return 0 as output.
4.Two necklaces should have their average brightness greater than the original one and the difference between the average brightness of the two pieces is minimum.
5.The average brightness of each piece should be either greater than or equal to the original piece.
This problem is rather hard to do efficiently (in NP somewhere).
Say you had a set that averaged to X. That is, X = (x1 + x2 + ... + xn) / n.
Suppose you break it up into sets that average to S and T with s and t items in each set, respectively.
You can mathematically prove that if one of the averages, S or T, is greater than X, the other of the two must be less than X.
Hence, the two sets must have exactly the same brightness because that's the only way your conditions are satisfiable.
Knowing this, you're ending up with the sumset sum problem -- you want to find a subset that sums to exactly half of the sum of the entire set. That's a problem that's known to be hard. (It's been classified NP. And alright, it's not exactly the same as the subset sum problem, but if subtract the average of the full set from each of the brightness values, solving the subset sum problem will give you your answer. (Do the reverse to see how you can solve the subset sum problem from your problem.)
Hence, there's no fast way of doing this -- only approximations or exponential running times... However, maybe this will help. It mentions better running times if your weights (in your case, brightness levels) are bounded.

Sorting strings so that hamming distance is low between adjacent strings

Problem:
I have N (~100k-1m) strings each D (e.g. 2000) characters long and with a low alphabet (eg 3 possible characters). I would like to sort these strings such that there are as few possible changes between adjacent strings (eg hamming distance is low). Solution doesn't have to be the best possible but closer the better.
Example
N=4
D=5
//initial strings
1. aaacb
2. bacba
3. acacb
4. cbcba
//sorted so that hamming distance between adjacent strings is low
1. aaacb
3. acacb (Hamming distance 1->3 = 1)
4. cbcba (Hamming distance 3->4 = 4)
2. bacba (Hamming distance 4->2 = 2)
Thoughts about the problem
I have a bad feeling this is a non trivial problem. If we think of each string as a node and the distances to other strings as an edge, then we are looking at a travelling salesman problem. The large number of strings means that calculating all of the pairwise distances beforehand is potentially infeasible, I think turning the problem into some more like the Canadian Traveller Problem.
At the moment my solution has been to use a VP tree to find a greedy nearest neighbour type solution to the problem
curr_string = a randomly chosen string from full set
while(tree not empty)
found_string = find nearest string in tree
tree.remove(found_string)
sorted_list.add(curr_string)
curr_string = found_string
but initial results appear to be poor. Hashing strings so that more similar ones are closer may be another option but I know little about how good a solution this will provide or how well it will scale to data of this size.
Even if you consider this problem as similar to the travelling salesman problem (TSP), I believe that Hamming distances will follow the triangle inequality (Hamming(A,B) + Hamming(B,C) ≤ Hamming(A,C)), so you're only really dealing with ∆TSP (the metric travelling salesman problem), for which there are a number of algorithms which give good approximations at an ideal result. In particular, the Christofides algorithm will always give you a path of at most 1.5x the minimum possible length.
Yes this is a Traveling salesman problem,
but I don't know if any of the dozen programs under
TSP source code library
can do 1M points straight up, with a plug-in metric.
A possible 2-stage approach:
1) split the 1M points into 50 clusters
with a
Nearest neighbor search.
Do TSP on the 50 cluster centres.
2) put all the 1M - 50 points between the 2 nearest centres;
do TSP on each string of 1M / 50.
Here "50" could be 100 or 1000.
If 1000 is too big, recurse: split 1000 into 30 clusters of ~ 30 each.
K-means can cluster 1M points,
but again I don't know of a fast implementation with plug-in metric.
See however
scikit-learn clustering
To find a centroid of N points,
one which minimizes |centre - all others|,
you can afaik beat O(N^2) only by
taking the best of a random sample of say sqrt(N) --
should be good enough. (Or google / ask a separate question on fast approximate centroid).
First pack the data tightly to save memory accesses in the whole flow.
In this case, encode a b c as 00 01 10
(Hamming distance beween each pair = 1):
2000 x 2 bits = 500 bytes.
Fwiw, finding min Hammingdist( 4k bits, 10k x 4k ) takes ~ 40 msec on my mac ppc.

Efficiently find binary strings with low Hamming distance in large set

Problem:
Given a large (~100 million) list of unsigned 32-bit integers, an unsigned 32-bit integer input value, and a maximum Hamming Distance, return all list members that are within the specified Hamming Distance of the input value.
Actual data structure to hold the list is open, performance requirements dictate an in-memory solution, cost to build the data structure is secondary, low cost to query the data structure is critical.
Example:
For a maximum Hamming Distance of 1 (values typically will be quite small)
And input:
00001000100000000000000001111101
The values:
01001000100000000000000001111101
00001000100000000010000001111101
should match because there is only 1 position in which the bits are different.
11001000100000000010000001111101
should not match because 3 bit positions are different.
My thoughts so far:
For the degenerate case of a Hamming Distance of 0, just use a sorted list and do a binary search for the specific input value.
If the Hamming Distance would only ever be 1, I could flip each bit in the original input and repeat the above 32 times.
How can I efficiently (without scanning the entire list) discover list members with a Hamming Distance > 1.
Question: What do we know about the Hamming distance d(x,y)?
Answer:
It is non-negative: d(x,y) ≥ 0
It is only zero for identical inputs: d(x,y) = 0 ⇔ x = y
It is symmetric: d(x,y) = d(y,x)
It obeys the triangle inequality, d(x,z) ≤ d(x,y) + d(y,z)
Question: Why do we care?
Answer: Because it means that the Hamming distance is a metric for a metric space. There are algorithms for indexing metric spaces.
Metric tree (Wikipedia)
BK-tree (Wikipedia)
M-tree (Wikipedia)
VP-tree (Wikipedia)
Cover tree (Wikipedia)
You can also look up algorithms for "spatial indexing" in general, armed with the knowledge that your space is not Euclidean but it is a metric space. Many books on this subject cover string indexing using a metric such as the Hamming distance.
Footnote: If you are comparing the Hamming distance of fixed width strings, you may be able to get a significant performance improvement by using assembly or processor intrinsics. For example, with GCC (manual) you do this:
static inline int distance(unsigned x, unsigned y)
{
return __builtin_popcount(x^y);
}
If you then inform GCC that you are compiling for a computer with SSE4a, then I believe that should reduce to just a couple opcodes.
Edit: According to a number of sources, this is sometimes/often slower than the usual mask/shift/add code. Benchmarking shows that on my system, a C version outperform's GCC's __builtin_popcount by about 160%.
Addendum: I was curious about the problem myself, so I profiled three implementations: linear search, BK tree, and VP tree. Note that VP and BK trees are very similar. The children of a node in a BK tree are "shells" of trees containing points that are each a fixed distance from the tree's center. A node in a VP tree has two children, one containing all the points within a sphere centered on the node's center and the other child containing all the points outside. So you can think of a VP node as a BK node with two very thick "shells" instead of many finer ones.
The results were captured on my 3.2 GHz PC, and the algorithms do not attempt to utilize multiple cores (which should be easy). I chose a database size of 100M pseudorandom integers. Results are the average of 1000 queries for distance 1..5, and 100 queries for 6..10 and the linear search.
Database: 100M pseudorandom integers
Number of tests: 1000 for distance 1..5, 100 for distance 6..10 and linear
Results: Average # of query hits (very approximate)
Speed: Number of queries per second
Coverage: Average percentage of database examined per query
-- BK Tree -- -- VP Tree -- -- Linear --
Dist Results Speed Cov Speed Cov Speed Cov
1 0.90 3800 0.048% 4200 0.048%
2 11 300 0.68% 330 0.65%
3 130 56 3.8% 63 3.4%
4 970 18 12% 22 10%
5 5700 8.5 26% 10 22%
6 2.6e4 5.2 42% 6.0 37%
7 1.1e5 3.7 60% 4.1 54%
8 3.5e5 3.0 74% 3.2 70%
9 1.0e6 2.6 85% 2.7 82%
10 2.5e6 2.3 91% 2.4 90%
any 2.2 100%
In your comment, you mentioned:
I think BK-trees could be improved by generating a bunch of BK-trees with different root nodes, and spreading them out.
I think this is exactly the reason why the VP tree performs (slightly) better than the BK tree. Being "deeper" rather than "shallower", it compares against more points rather than using finer-grained comparisons against fewer points. I suspect that the differences are more extreme in higher dimensional spaces.
A final tip: leaf nodes in the tree should just be flat arrays of integers for a linear scan. For small sets (maybe 1000 points or fewer) this will be faster and more memory efficient.
I wrote a solution where I represent the input numbers in a bitset of 232 bits, so I can check in O(1) whether a certain number is in the input. Then for a queried number and maximum distance, I recursively generate all numbers within that distance and check them against the bitset.
For example for maximum distance 5, this is 242825 numbers (sumd = 0 to 5 {32 choose d}). For comparison, Dietrich Epp's VP-tree solution for example goes through 22% of the 100 million numbers, i.e., through 22 million numbers.
I used Dietrich's code/solutions as the basis to add my solution and compare it with his. Here are speeds, in queries per second, for maximum distances up to 10:
Dist BK Tree VP Tree Bitset Linear
1 10,133.83 15,773.69 1,905,202.76 4.73
2 677.78 1,006.95 218,624.08 4.70
3 113.14 173.15 27,022.32 4.76
4 34.06 54.13 4,239.28 4.75
5 15.21 23.81 932.18 4.79
6 8.96 13.23 236.09 4.78
7 6.52 8.37 69.18 4.77
8 5.11 6.15 23.76 4.68
9 4.39 4.83 9.01 4.47
10 3.69 3.94 2.82 4.13
Prepare 4.1s 21.0s 1.52s 0.13s
times (for building the data structure before the queries)
For small distances, the bitset solution is by far the fastest of the four. Question author Eric commented below that the largest distance of interest would probably be 4-5. Naturally, my bitset solution becomes slower for larger distances, even slower than the linear search (for distance 32, it would go through 232 numbers). But for distance 9 it still easily leads.
I also modified Dietrich's testing. Each of the above results is for letting the algorithm solve at least three queries and as many queries as it can in about 15 seconds (I do rounds with 1, 2, 4, 8, 16, etc queries, until at least 10 seconds have passed in total). That's fairly stable, I even get similar numbers for just 1 second.
My CPU is an i7-6700. My code (based on Dietrich's) is here (ignore the documentation there at least for now, not sure what to do about that, but the tree.c contains all the code and my test.bat shows how I compiled and ran (I used the flags from Dietrich's Makefile)). Shortcut to my solution.
One caveat: My query results contain numbers only once, so if the input list contains duplicate numbers, that may or may not be desired. In question author Eric's case, there were no duplicates (see comment below). In any case, this solution might be good for people who either have no duplicates in the input or don't want or need duplicates in the query results (I think it's likely that the pure query results are only a means to an end and then some other code turns the numbers into something else, for example a map mapping a number to a list of files whose hash is that number).
A common approach (at least common to me) is to divide your bit string in several chunks and query on these chunks for an exact match as pre-filter step. If you work with files, you create as many files as you have chunks (e.g. 4 here) with each chunk permuted in front and then sort the files. You can use a binary search and you can even expand you search above and below a matching chunk for bonus.
You then can perform a bitwise hamming distance computation on the returned results which should be only a smaller subset of your overall dataset. This can be done using data files or SQL tables.
So to recap: Say you have a bunch of 32 bits strings in a DB or files and that you want to find every hash that are within a 3 bits hamming distance or less of your "query" bit string:
create a table with four columns: each will contain an 8 bits (as a string or int) slice of the 32 bits hashes, islice 1 to 4. Or if you use files, create four files, each being a permutation of the slices having one "islice" at the front of each "row"
slice your query bit string the same way in qslice 1 to 4.
query this table such that any of qslice1=islice1 or qslice2=islice2 or qslice3=islice3 or qslice4=islice4. This gives you every string that are within 7 bits (8 - 1) of the query string. If using a file, do a binary search in each of the four permuted files for the same results.
for each returned bit string, compute the exact hamming distance pair-wise with you query bit string (reconstructing the index-side bit strings from the four slices either from the DB or from a permuted file)
The number of operations in step 4 should be much less than a full pair-wise hamming computation of your whole table and is very efficient in practice.
Furthermore, it is easy to shard the files in smaller files as need for more speed using parallelism.
Now of course in your case, you are looking for a self-join of sort, that is all the values that are within some distance of each other. The same approach still works IMHO, though you will have to expand up and down from a starting point for permutations (using files or lists) that share the starting chunk and compute the hamming distance for the resulting cluster.
If running in memory instead of files, your 100M 32 bits strings data set would be in the range of 4 GB. Hence the four permuted lists may need about 16GB+ of RAM. Though I get excellent results with memory mapped files instead and must less RAM for similar size datasets.
There are open source implementations available. The best in the space is IMHO the one done for Simhash by Moz, C++ but designed for 64 bits strings and not 32 bits.
This bounded happing distance approach was first described AFAIK by Moses Charikar in its "simhash" seminal paper and the corresponding Google patent:
APPROXIMATE NEAREST NEIGHBOR SEARCH IN HAMMING SPACE
[...]
Given bit vectors consisting of d bits each, we choose
N = O(n 1/(1+ ) ) random permutations of the bits. For each
random permutation σ, we maintain a sorted order O σ of
the bit vectors, in lexicographic order of the bits permuted
by σ. Given a query bit vector q, we find the approximate
nearest neighbor by doing the following:
For each permutation σ, we perform a binary search on O σ to locate the
two bit vectors closest to q (in the lexicographic order obtained by bits permuted by σ). We now search in each of
the sorted orders O σ examining elements above and below
the position returned by the binary search in order of the
length of the longest prefix that matches q.
Monika Henziger expanded on this in her paper "Finding near-duplicate web pages: a large-scale evaluation of algorithms":
3.3 The Results for Algorithm C
We partitioned the bit string of each page into 12 non-
overlapping 4-byte pieces, creating 20B pieces, and computed the C-similarity of all pages that had at least one
piece in common. This approach is guaranteed to find all
pairs of pages with difference up to 11, i.e., C-similarity 373,
but might miss some for larger differences.
This is also explained in the paper Detecting Near-Duplicates for Web Crawling by Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma:
THE HAMMING DISTANCE PROBLEM
Definition: Given a collection of f -bit fingerprints and a
query fingerprint F, identify whether an existing fingerprint
differs from F in at most k bits. (In the batch-mode version
of the above problem, we have a set of query fingerprints
instead of a single query fingerprint)
[...]
Intuition: Consider a sorted table of 2 d f -bit truly random fingerprints. Focus on just the most significant d bits
in the table. A listing of these d-bit numbers amounts to
“almost a counter” in the sense that (a) quite a few 2 d bit-
combinations exist, and (b) very few d-bit combinations are
duplicated. On the other hand, the least significant f − d
bits are “almost random”.
Now choose d such that |d − d| is a small integer. Since
the table is sorted, a single probe suffices to identify all fingerprints which match F in d most significant bit-positions.
Since |d − d| is small, the number of such matches is also
expected to be small. For each matching fingerprint, we can
easily figure out if it differs from F in at most k bit-positions
or not (these differences would naturally be restricted to the
f − d least-significant bit-positions).
The procedure described above helps us locate an existing
fingerprint that differs from F in k bit-positions, all of which
are restricted to be among the least significant f − d bits of
F. This takes care of a fair number of cases. To cover all
the cases, it suffices to build a small number of additional
sorted tables, as formally outlined in the next Section.
Note: I posted a similar answer to a related DB-only question
You could pre-compute every possible variation of your original list within the specified hamming distance, and store it in a bloom filter. This gives you a fast "NO" but not necessarily a clear answer about "YES."
For YES, store a list of all the original values associated with each position in the bloom filter, and go through them one at a time. Optimize the size of your bloom filter for speed / memory trade-offs.
Not sure if it all works exactly, but seems like a good approach if you've got runtime RAM to burn and are willing to spend a very long time in pre-computation.
How about sorting the list and then doing a binary search in that sorted list on the different possible values within you Hamming Distance?
One possible approach to solve this problem is using a Disjoint-set data structure. The idea is merge list members with Hamming distance <= k in the same set. Here is the outline of the algorithm:
For each list member calculate every possible value with Hamming distance <= k. For k=1, there are 32 values (for 32-bit values). For k=2, 32 + 32*31/2 values.
For each calculated value, test if it is in the original input. You can use an array with size 2^32 or a hash map to do this check.
If the value is in the original input, do a "union" operation with the list member.
Keep the number of union operations executed in a variable.
You start the algorithm with N disjoint sets (where N is the number of elements in the input). Each time you execute an union operation, you decrease by 1 the number of disjoint sets. When the algorithm terminates, the disjoint-set data structure will have all the values with Hamming distance <= k grouped in disjoint sets. This disjoint-set data structure can be calculated in almost linear time.
Here's a simple idea: do a byte-wise radix sort of the 100m input integers, most significant byte first, keeping track of bucket boundaries on the first three levels in some external structure.
To query, start with a distance budget of d and your input word w. For each bucket in the top level with byte value b, calculate the Hamming distance d_0 between b and the high byte of w. Recursively search that bucket with a budget of d - d_0: that is, for each byte value b', let d_1 be the Hamming distance between b' and the second byte of w. Recursively search into the third layer with a budget of d - d_0 - d_1, and so on.
Note that the buckets form a tree. Whenever your budget becomes negative, stop searching that subtree. If you recursively descend into a leaf without blowing your distance budget, that leaf value should be part of the output.
Here's one way to represent the external bucket boundary structure: have an array of length 16_777_216 (= (2**8)**3 = 2**24), where the element at index i is the starting index of the bucket containing values in range [256*i, 256*i + 255]. To find the index one beyond the end of that bucket, look up at index i+1 (or use the end of the array for i + 1 = 2**24).
Memory budget is 100m * 4 bytes per word = 400 MB for the inputs, and 2**24 * 4 bytes per address = 64 MiB for the indexing structure, or just shy of half a gig in total. The indexing structure is a 6.25% overhead on the raw data. Of course, once you've constructed the indexing structure you only need to store the lowest byte of each input word, since the other three are implicit in the index into the indexing structure, for a total of ~(64 + 50) MB.
If your input is not uniformly distributed, you could permute the bits of your input words with a (single, universally shared) permutation which puts all the entropy towards the top of the tree. That way, the first level of pruning will eliminate larger chunks of the search space.
I tried some experiments, and this performs about as well as linear search, sometimes even worse. So much for this fancy idea. Oh well, at least it's memory efficient.

Resources