C++ CLI Eigen: setting values in Matrix - matrix

This is my code.
Matrix<int, 240, 240>* imagePixels;
for (signed int x = 0; x < 100; ++x)
{
for (signed int y = 0; y < 100; ++y)
{
imagePixels(x,y) = y;
}
}
I want to simply add values to my matrix but it gives me:
expression preceding parentheses of apparent call must have (pointer-to-) function type
at matrix(x,y) = y;
I'm using C++ CLI.

I've never used Eigen, but I think it's complaining about the type of imagePixels.
Matrix<int, 240, 240>* imagePixels;
(I'm assuming the fact that you didn't initialize imagePixels with anything is a copy-paste error on the web, not in your actual code.)
All the examples of using the () syntax to access Eigen matrix objects are using the class a value type, not a pointer. Try it without the *, and see if that solves it for you.
Matrix<int, 240, 240> imagePixels;
// ^-- No "*"
Edit
OK, so imagePixels is a member of your managed class. Managed classes are only allowed to contain other managed classes, managed handles (^), unmanaged pointers (*), or basic types (e.g., int). Unmanaged classes as a value type is not allowed.
There's two ways around this:
Leave imagePixels as a pointer, and dereference it each time you use the () syntax.
(*imagePixels)(x,y) = y;
Declare a unmanaged struct to hold your matrix as a value, and have a pointer to that in your class.
struct HolderOfUnmanagedThings { Matrix<int, 240, 240> imagePixels; };
// In your managed class
HolderOfUnmanagedThings* unmanaged = new HolderOfUnmanagedThings();
unmanaged->imagePixels(x,y) = y;

Related

C++ Shared pointer points to the wrong address when i use make_shared function from stl

So i have a class in which there is a shared_ptr declared as following
std :: shared_ptr< T > dyn_arr{ new T[ dyn_arr_max_size ], std :: default_delete< T[] >() };
This points to the dynamic array of some size.
I also implemented an iterator for it. Inside this iterator there is a ++ overloaded operator. Now when i get
shared_ptr<T> ptr_iter= dyn_arr;
for example it will work for the first one or two elements. After that it does not iterate properly. Also i notices the following:
For example my ptr_iter is address ABDC0 for ptr_iter.get() in the beginning
After doing
ptr_iter = std :: make_shared<T>( *(ptr.get() + 1 ) );
or
ptr_iter = std :: make_shared<T>( ptr.get()[1] );
ptr_iter.get() will point to some other address now like SDBC instead of pointing to ABDC4 for integers for example. Can someone please explain me why is this happening???
I need to be able to do ptr_iter = make_shared( ptr_iter.get() + 1 ); somehow instead of ptr_iter = make_shared( *(ptr_iter.get() + 1) );
std::make_shared allocates new memory, which you don't want. To solve this problem just use the constructor of std::shared_ptr and pass the adress of the element in the array. However, std::shared_ptr attempts to deallocate as soon as the reference count falls to zero, and you will call delete on an element of the array. That's why you'll need to pass a custom delete which does nothing:
std::shared_ptr<int> ptr_iter{dyn_arr.get() + 1, [](int* pi) {}};
// ^-- Custom deleter does nothing
Example in a loop:
for (int i = 0; i < 9; ++i) {
std::shared_ptr<int> ptr_iter{dyn_arr.get() + i, [](int* pi) {}};
std::cout << *ptr_iter.get() << std::endl;
}
However, I strongly recommend to not do this in other cases than in your assignment!

node.js c++ addon - afraid of memory leak

first of all I admit I'm a newbie in C++ addons for node.js.
I'm writing my first addon and I reached a good result: the addon does what I want. I copied from various examples I found in internet to exchange complex data between the two languages, but I understood almost nothing of what I wrote.
The first thing scaring me is that I wrote nothing that seems to free some memory; another thing which is seriously worrying me is that I don't know if what I wrote may helps or creating confusion for the V8 garbage collector; by the way I don't know if there are better ways to do what I did (iterating over js Object keys in C++, creating js Objects in C++, creating Strings in C++ to be used as properties of js Objects and what else wrong you can find in my code).
So, before going on with my job writing the real math of my addon, I would like to share with the community the nan and V8 part of it to ask if you see something wrong or that can be done in a better way.
Thank you everybody for your help,
iCC
#include <map>
#include <nan.h>
using v8::Array;
using v8::Function;
using v8::FunctionTemplate;
using v8::Local;
using v8::Number;
using v8::Object;
using v8::Value;
using v8::String;
using Nan::AsyncQueueWorker;
using Nan::AsyncWorker;
using Nan::Callback;
using Nan::GetFunction;
using Nan::HandleScope;
using Nan::New;
using Nan::Null;
using Nan::Set;
using Nan::To;
using namespace std;
class Data {
public:
int dt1;
int dt2;
int dt3;
int dt4;
};
class Result {
public:
int x1;
int x2;
};
class Stats {
public:
int stat1;
int stat2;
};
typedef map<int, Data> DataSet;
typedef map<int, DataSet> DataMap;
typedef map<float, Result> ResultSet;
typedef map<int, ResultSet> ResultMap;
class MyAddOn: public AsyncWorker {
private:
DataMap *datas;
ResultMap results;
Stats stats;
public:
MyAddOn(Callback *callback, DataMap *set): AsyncWorker(callback), datas(set) {}
~MyAddOn() { delete datas; }
void Execute () {
for(DataMap::iterator i = datas->begin(); i != datas->end(); ++i) {
int res = i->first;
DataSet *datas = &i->second;
for(DataSet::iterator l = datas->begin(); l != datas->end(); ++l) {
int dt4 = l->first;
Data *data = &l->second;
// TODO: real population of stats and result
}
// test result population
results[res][res].x1 = res;
results[res][res].x2 = res;
}
// test stats population
stats.stat1 = 23;
stats.stat2 = 42;
}
void HandleOKCallback () {
Local<Object> obj;
Local<Object> res = New<Object>();
Local<Array> rslt = New<Array>();
Local<Object> sts = New<Object>();
Local<String> x1K = New<String>("x1").ToLocalChecked();
Local<String> x2K = New<String>("x2").ToLocalChecked();
uint32_t idx = 0;
for(ResultMap::iterator i = results.begin(); i != results.end(); ++i) {
ResultSet *set = &i->second;
for(ResultSet::iterator l = set->begin(); l != set->end(); ++l) {
Result *result = &l->second;
// is it ok to declare obj just once outside the cycles?
obj = New<Object>();
// is it ok to use same x1K and x2K instances for all objects?
Set(obj, x1K, New<Number>(result->x1));
Set(obj, x2K, New<Number>(result->x2));
Set(rslt, idx++, obj);
}
}
Set(sts, New<String>("stat1").ToLocalChecked(), New<Number>(stats.stat1));
Set(sts, New<String>("stat2").ToLocalChecked(), New<Number>(stats.stat2));
Set(res, New<String>("result").ToLocalChecked(), rslt);
Set(res, New<String>("stats" ).ToLocalChecked(), sts);
Local<Value> argv[] = { Null(), res };
callback->Call(2, argv);
}
};
NAN_METHOD(AddOn) {
Local<Object> datas = info[0].As<Object>();
Callback *callback = new Callback(info[1].As<Function>());
Local<Array> props = datas->GetOwnPropertyNames();
Local<String> dt1K = Nan::New("dt1").ToLocalChecked();
Local<String> dt2K = Nan::New("dt2").ToLocalChecked();
Local<String> dt3K = Nan::New("dt3").ToLocalChecked();
Local<Array> props2;
Local<Value> key;
Local<Object> value;
Local<Object> data;
DataMap *set = new DataMap();
int res;
int dt4;
DataSet *dts;
Data *dt;
for(uint32_t i = 0; i < props->Length(); i++) {
// is it ok to declare key, value, props2 and res just once outside the cycle?
key = props->Get(i);
value = datas->Get(key)->ToObject();
props2 = value->GetOwnPropertyNames();
res = To<int>(key).FromJust();
dts = &((*set)[res]);
for(uint32_t l = 0; l < props2->Length(); l++) {
// is it ok to declare key, data and dt4 just once outside the cycles?
key = props2->Get(l);
data = value->Get(key)->ToObject();
dt4 = To<int>(key).FromJust();
dt = &((*dts)[dt4]);
int dt1 = To<int>(data->Get(dt1K)).FromJust();
int dt2 = To<int>(data->Get(dt2K)).FromJust();
int dt3 = To<int>(data->Get(dt3K)).FromJust();
dt->dt1 = dt1;
dt->dt2 = dt2;
dt->dt3 = dt3;
dt->dt4 = dt4;
}
}
AsyncQueueWorker(new MyAddOn(callback, set));
}
NAN_MODULE_INIT(Init) {
Set(target, New<String>("myaddon").ToLocalChecked(), GetFunction(New<FunctionTemplate>(AddOn)).ToLocalChecked());
}
NODE_MODULE(myaddon, Init)
One year and half later...
If somebody is interested, my server is up and running since my question and the amount of memory it requires is stable.
I can't say if the code I wrote really does not has some memory leak or if lost memory is freed at each thread execution end, but if you are afraid as I was, I can say that using same structure and calls does not cause any real problem.
You do actually free up some of the memory you use, with the line of code:
~MyAddOn() { delete datas; }
In essence, C++ memory management boils down to always calling delete for every object created by new. There are also many additional architecture-specific and legacy 'C' memory management functions, but it is not strictly necessary to use these when you do not require the performance benefits.
As an example of what could potentially be a memory leak: You're passing the object held in the *callback pointer to the function AsyncQueueWorker. Yet nowhere in your code is this pointer freed, so unless the Queue worker frees it for you, there is a memory leak here.
You can use a memory tool such as valgrind to test your program further. It will spot most memory problems for you and comes highly recommended.
One thing I've observed is that you often ask (paraphrased):
Is it okay to declare X outside my loop?
To which the answer actually is that declaring variables inside of your loops is better, whenever you can do it. Declare variables as deep inside as you can, unless you have to re-use them. Variables are restricted in scope to the outermost set of {} brackets. You can read more about this in this question.
is it ok to use same x1K and x2K instances for all objects?
In essence, when you do this, if one of these objects modifies its 'x1K' string, then it will change for all of them. The advantage is that you free up memory. If the string is the same for all these objects anyway, instead of having to store say 1,000,000 copies of it, your computer will only keep a single one in memory and have 1,000,000 pointers to it instead. If the string is 9 ASCII characters long or longer under amd64, then that amounts to significant memory savings.
By the way, if you don't intend to modify a variable after its declaration, you can declare it as const, a keyword short for constant which forces the compiler to check that your variable is not modified after declaration. You may have to deal with quite a few compiler errors about functions accepting only non-const versions of things they don't modify, some of which may not be your own code, in which case you're out of luck. Being as conservative as possible with non-const variables can help spot problems.

Is there an easier way to set/get values in a gSOAP request/response?

I am using gSOAP to configure an ONVIF compatible camera.
Currently, I am manually setting all the parameters in the request by doing something like this. This is for the SetVideEncoderConfiguration
MediaBindingProxy mediaDevice (uri);
AUTHENTICATE (mediaDevice);
_trt__SetVideoEncoderConfiguration req;
_trt__SetVideoEncoderConfigurationResponse resp;
struct tt__VideoEncoderConfiguration encoderConfig;
struct tt__VideoResolution resolutionConfig;
encoderConfig.Name = strdup (name);
encoderConfig.UseCount = 1;
encoderConfig.Quality = 50;
if (strcmp (encoding, "H264") == 0)
encoderConfig.Encoding = tt__VideoEncoding__H264;
else if (strcmp (encoding, "JPEG") == 0)
encoderConfig.Encoding = tt__VideoEncoding__JPEG;
encoderConfig.token = strdup (profileToken);
encoderConfig.SessionTimeout = (LONG64)"PT0S";
resolutionConfig.Width=1280;
resolutionConfig.Height=720;
encoderConfig.Resolution = &resolutionConfig;
tt__VideoRateControl rateControl;
rateControl.FrameRateLimit = 15;
rateControl.EncodingInterval = 1;
rateControl.BitrateLimit = 4500;
encoderConfig.RateControl = &rateControl;
struct tt__H264Configuration h264;
h264.GovLength = 30;
h264.H264Profile = tt__H264Profile__Baseline;
encoderConfig.H264 = &h264;
struct tt__MulticastConfiguration multicast;
struct tt__IPAddress address;
address.IPv4Address = strdup ("0.0.0.0");
multicast.Address = &address;
encoderConfig.Multicast = &multicast;
req.Configuration = &encoderConfig;
req.ForcePersistence = true;
int ret = mediaDevice.SetVideoEncoderConfiguration (&req, resp);
qDebug () << "Set Encoder: " << ret;
Is there an easier way to do this? May be some function calls that set the request parameters? Another way I found with GetMediaUri was to use something like
soap_new_req__trt__GetStreamUri (mediaDevice.soap,soap_new_req_tt__StreamSetup (mediaDevice.soap, (enum tt__StreamType)0, soap_new_tt__Transport(mediaDevice.soap), 1, NULL), "profile1");
Are these the only two ways for client side code with gSOAP?
-Mandar Joshi
There are four variations of soap_new_T() to allocate data of type T in C++ with gSOAP:
T * soap_new_T(struct soap*) returns a new instance of T that is default
initialized and allocated on the heap managed by the soap context.
T * soap_new_T(struct soap*, int n) returns an array of n new instances of
T on the managed heap. The instances in the array are default initialized as described above.
T * soap_new_req_T(struct soap*, ...) (structs and classes only) returns a
new instance of T allocated on the managed heap and sets the required data members to the values specified in the other arguments ....
T * soap_new_set_T(struct soap*, ...) (structs and classes only) returns a
new instance of T on the managed heap and sets the public/serializable data members to the values specified in the other arguments ....
Use soap_strdup(struct soap*, const char*) instead of strdup to dup strings onto the managed heap.
All data on the managed heap is mass-deleted with soap_destroy(soap) and
soap_end(soap) (call these in that order) which must be called before soap_done(soap) or soap_free(soap).
To allocate pointers to data, use templates:
template<class T>
T * soap_make(struct soap *soap, T val)
{
T *p = (T*)soap_malloc(soap, sizeof(T));
if (p)
*p = val;
return p;
}
template<class T>
T **soap_make_array(struct soap *soap, T* array, int n)
{
T **p = (T**)soap_malloc(soap, n * sizeof(T*));
for (int i = 0; i < n; ++i)
p[i] = &array[i];
return p;
}
Then use soap_make<int>(soap, 123) to create a pointer to the value 123 on the managed heap and soap_make_array(soap, soap_new_CLASSNAME(soap, 100), 100) to create 100 pointers to 100 instances of CLASSNAME.
The gSOAP tools also generate deep copy operations for you: CLASSNAME::soap_dup(struct soap*) creates a deep copy of the object and allocates it in a another soap context that you provide as argument. Use NULL as this argument to allocate unmanaged deep copies (but these cannot have pointer cycles!). Then delete unmanaged copies with CLASSNAME::soap_del() for deep deletion of all members and then delete the object itself.
See Memory management in C++ for more details. Use gSOAP 2.8.39 and greater.

Is storing a stack variable in a member vector valid use of a vector?

Actually, I am confronted with a code base and have a questions concerning the std::vector concerning stack and heap.
Somewhere in a member function I encounter some code similar to this:
Member declaration:
//member variable in DataHelper class
std::vector<Data::Point> mDataPoints;
Member function:
void DataHelper::LoadData(int nPoints)
{
//mDataPoints is a member variable
mDataPoints.reserve(nPoints);
for (UINT i = 0; i < nPoints; i++)
{
Data::Point point; //some data class
point.X = 1; //dummy values
point.Y = 2;
point.Z = 3;
mDataPoints.push_back(point);
}
}
So the Data::Points are stored in the vector for later use.
I thought that the Data::Point point; is allocated on the stack and that it's storage for later use in this sense will lead to errors. Is this right?
In fact, when you do a push_pack in a std::vector, you copy the data points. So, you will have 2 identical instances, one in the heap and the other one in the vector.
You have to make sure that your Data::Point implements a copy constructor if needed (for instance, if contains pointers).

C++11 Magic to test and assign from pointer if not nullptr

Okay, I believe in defensive programming. I assume that if I get a pointer it might be null (especially when using GSOAP). Therefore before I try to use the value of the pointer, I always check to make sure the pointer is not null.
In my current code, this is leading to a lot of nearly identical statements.
if (res->A) {
item.out_trace->a = *res->A;
}
if (res->B) {
item.out_trace->b = *res->B;
}
if (res->C) {
item.out_trace->b = *res->C;
}
I realize that I could always go and define a macro for this, but I am wondering if there is a neat C++11 trick to do that. I would love something like the C# ??
// Set y to the value of x if x is NOT null; otherwise,
// if x = null, set y to -1.
int y = x ?? -1;
Thanks.
Perhaps a template like this would meet your need:
template<typename T>
T safe_get( T const *ptr, T defval = T{} ) {
return ptr ? *ptr : std::move(defval);
}
It could be used like this:
item.out_trace->a = safe_get( rez->A );
Ideally it would be inlined and effectively zero-overhead (other than the inherent overhead of doing the safety check and having a branch, of course).

Resources