Big Theta complexity for simple algorithm - pseudocode

I have the following code and have to determine the big theta complexity
for i =1 to n do
for j = 1 to n do
k=j
while k<= n do
k = k*3
end while
end for
end for
It's easy to see that the first two for-loops run n times each, but the while loop is throwing my off. The first time it runs log3(n) times, but after that i can't really tell.
Anyone who can help?

Let T be the run time. It is clear T is Ω(n2). We can use Stirling's Approximation to expand ln n! to get
T = ∑i ∑j ⌈lg3(n/j)⌉ = n * O(∑j ln n - ln j + 1) = n * O(n ln n - ln n! + n) = n * O(n ln n - (n ln n - n + O(ln n)) + n) = O(n2)
Thus T = Θ(n2)

Solution without using heavy-weight math:
Turn the problem on its head: instead of thinking about the first time the inner loop runs, think about the last time: it runs only once. In fact, the innermost loop runs only once for most values of j.
It runs once when j > n/3, that is, for 2n/3 values of j
It runs twice when n/9 < j <= n/3, that is, for 2n/9 values of j
It runs 3 times when n/27 < j <= n/9, that is, for 2n/27 values of j
It runs 4 times when n/81 < j <= n/27, that is, for 2n/81 values of j
...
The total number of times the innermost loop runs is going to be
1 * 2n/3 + 2 * 2n/9 + 3 * 2n/27 + 4 * 2n/81 + ...
= 2n(1/3 + 2/9 + 3/27 + ... )
< 2n Sum[k/3^k, for k=1 to infinity]
It's easy to see that the series Sum[k/3^k] converges (ratio test). Therefore the j-loop runs in O(n) time, and the entire thing in O(n²) time.

Related

Time complexity of the inner loop

Can someone help me with calculating the time complexity of the inner loop? As far as I understand, the outer one will be O(n). But I have no idea how to calculate what happens inside the second one.
for (int i = 2; i < n; i++) {
for (int j = 2; i * j < n; j++) {
}
For every iteration of "outer loop", inner loop runs n/i times
So, total complexity of this will be given by:
n/2 + n/3 + n/4 + ...
= n * (1/2 + 1/3 + 1/4 ...)
For the right term above, upper bound is ln(n)
Hence, complexity of this code is O(n log n).
The inner loop runs from 2 up to but not including n/i times. You can express it as n/i - 2.
If we run the inner loop n - 2 times (since that's the number of times the outer loop runs), we get the following summation:
(n/2 - 2) + (n/3 - 2) + ... + (3 - 2)
I have a hunch but can't remember 100% that this series sums up to log_e(n) * n or similar. So in terms of time complexity, this becomes O(log n * n).
The loop exits as soon as i * j ≥ n, i.e. when j = ceiling(n / i) ~ n / i. As it starts from j=2, the number of iterations is ceiling(n / i) - 1.

time complexity (with respect of n input)

I was asked if what time complexity if this:
What is the time complexity (with respect of n) of this algorithm:
k=0
for(i = n / 2 ; i < n ; i++ ) {
for( j=0 ; j < i ; j++)
k = k + n / 2
}
choices was : a. O(n) b. O(n/2) c. O(n log(n) and d. O(n^2)
can have a multiple answers.
i know the algorithm above is d. O(n^2) but i came with with a. O(n) since it is looking for complexity of n only?.
if you are to have this question. how would you answer it.?? im so curious about the answer.
The answer is O(n²).
This is easy to understand. I will try to make you understand it.
See, the outer for loop block is executed n - n/2 = n/2 times.
Of course it depends whether the number n is even or odd. If it's even then the outer loop is executed n/2 times. If it's odd then it's executed for (n-1)/2 times.
But for time complexity, we don't consider this. We just assume that the outer for loop is executed n/2 times where i starts from n/2 and ends at n - 1 (because the terminating condition is i < n and not i <= n).
For each iteration of the outer loop, the inner loop executes i times.
For example, for every iteration, inner loop starts with j = 0 to j = i - 1. This means that it executes i times (not i - 1 times because j starts from 0 and not from 1).
Therefore, for 1st iteration the inner loop is executed i = n / 2 times. i = n / 2 + 1 for 2nd iteration and so on upto i = n - 1 times.
Now, the total no. of times the inner loop executes is n/2 + (n/2 + 1) + (n/2 + 2) + ... + (n - 2) + (n - 1). It's simple math that this sums up to (3n² - n)/2 times.
So, the time complexity becomes O((3n² - n)/2).
But we ignore the n term because n² > n and the constant terms because for every n they will remain the same.
Therefore, the final time complexity is O(n²).
Hope this helps you understand.

Is this loop O(nlog(n))?

I have a nested for loop that I am trying to analyze the efficiency of. The loop looks like this:
int n = 1000;
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
System.out.print("*");
}
}
I don't believe that this algorithm is O(n^2) because the inner loop does not run n times, it only runs i times. However, it certainly is not O(n). So I hypothesize that it must be between the two efficiencies, which gives O(nlog(n)). Is this accurate or is it really a O(n^2) algorithm and I'm misunderstanding the effect the inner loop has on the efficiency?
Your algorithm will run a triangular number of times:
n * (n + 1) / 2
In the above case, n = 999 because the first j loop doesn't run:
(999 * 1000) / 2 = 499500
It is lower than n**2, but it still is O(n**2), because n * (n + 1) / 2 is n**2 / 2 + n / 2. When n is large, you can ignore n / 2 compared to n**2 / 2, and you can also ignore the constant 1 / 2 factor.
I kind of get your doubts, but try to think in this way: what value will i have in the worst case scenario? Answer is n-1, right? So, as the complexity is evaluated by considering the worst case scenario it turns out that it is O(n^2) as n * (n-1) ~ n^2.
The number of iterations is sum from i=0 to n-1 (sum from j=0 to i-1 (1)). The inner sum is obviously equal to i. sum from i=0 to n-1 (i) = n * (n-1) / 2 = O(n^2) is well known.

What is the complexity of this code whose nested for loop repeatedly doubles its counter?

In the book Programming Interviews Exposed it says that the complexity of the program below is O(N), but I don't understand how this is possible. Can someone explain why this is?
int var = 2;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j *= 2) {
var += var;
}
}
You need a bit of math to see that. The inner loop iterates Θ(1 + log [N/(i+1)]) times (the 1 + is necessary since for i >= N/2, [N/(i+1)] = 1 and the logarithm is 0, yet the loop iterates once). j takes the values (i+1)*2^k until it is at least as large as N, and
(i+1)*2^k >= N <=> 2^k >= N/(i+1) <=> k >= log_2 (N/(i+1))
using mathematical division. So the update j *= 2 is called ceiling(log_2 (N/(i+1))) times and the condition is checked 1 + ceiling(log_2 (N/(i+1))) times. Thus we can write the total work
N-1 N
∑ (1 + log (N/(i+1)) = N + N*log N - ∑ log j
i=0 j=1
= N + N*log N - log N!
Now, Stirling's formula tells us
log N! = N*log N - N + O(log N)
so we find the total work done is indeed O(N).
Outer loop runs n times. Now it all depends on the inner loop.
The inner loop now is the tricky one.
Lets follow:
i=0 --> j=1 ---> log(n) iterations
...
...
i=(n/2)-1 --> j=n/2 ---> 1 iteration.
i=(n/2) --> j=(n/2)+1 --->1 iteration.
i > (n/2) ---> 1 iteration
(n/2)-1 >= i > (n/4) ---> 2 iterations
(n/4) >= i > (n/8) ---> 3 iterations
(n/8) >= i > (n/16) ---> 4 iterations
(n/16) >= i > (n/32) ---> 5 iterations
(n/2)*1 + (n/4)*2 + (n/8)*3 + (n/16)*4 + ... + [n/(2^i)]*i
N-1
n*∑ [i/(2^i)] =< 2*n
i=0
--> O(n)
#Daniel Fischer's answer is correct.
I would like to add the fact that this algorithm's exact running time is as follows:
Which means:

O(n log log n) time complexity

I have a short program here:
Given any n:
i = 0;
while (i < n) {
k = 2;
while (k < n) {
sum += a[j] * b[k]
k = k * k;
}
i++;
}
The asymptotic running time of this is O(n log log n). Why is this the case? I get that the entire program will at least run n times. But I'm not sure how to find log log n. The inner loop is depending on k * k, so it's obviously going to be less than n. And it would just be n log n if it was k / 2 each time. But how would you figure out the answer to be log log n?
For mathematical proof, inner loop can be written as:
T(n) = T(sqrt(n)) + 1
w.l.o.g assume 2 ^ 2 ^ (t-1)<= n <= 2 ^ (2 ^ t)=>
we know 2^2^t = 2^2^(t-1) * 2^2^(t-1)
T(2^2^t) = T(2^2^(t-1)) + 1=T(2^2^(t-2)) + 2 =....= T(2^2^0) + t =>
T(2^2^(t-1)) <= T(n) <= T(2^2^t) = T(2^2^0) + log log 2^2^t = O(1) + loglogn
==> O(1) + (loglogn) - 1 <= T(n) <= O(1) + loglog(n) => T(n) = Teta(loglogn).
and then total time is O(n loglogn).
Why inner loop is T(n)=T(sqrt(n)) +1?
first see when inner loop breaks, when k>n, means before that k was at least sqrt(n), or in two level before it was at most sqrt(n), so running time will be T(sqrt(n)) + 2 ≥ T(n) ≥ T(sqrt(n)) + 1.
Time Complexity of a loop is O(log log n) if the loop variables is reduced / increased exponentially by a constant amount. If the loop variable is divided / multiplied by a constant amount then complexity is O(Logn).
Eg: in your case value of k is as follow. Let i in parenthesis denote the number of times the loop has been executed.
2 (0) , 2^2 (1), 2^4 (2), 2^8 (3), 2^16(4), 2^32 (5) , 2^ 64 (6) ...... till n (k) is reached.
The value of k here will be O(log log n) which is the number of times the loop has executed.
For the sake of assumption lets assume that n is 2^64. Now log (2^64) = 64 and log 64 = log (2^6) = 6. Hence your program ran 6 times when n is 2^64.
I think if the codes are like this, it should be n*log n;
i = 0;
while (i < n) {
k = 2;
while (k < n) {
sum += a[j] * b[k]
k *= c;// c is a constant bigger than 1 and less than k;
}
i++;
}
Okay, So let's break this down first -
Given any n:
i = 0;
while (i < n) {
k = 2;
while (k < n) {
sum += a[j] * b[k]
k = k * k;
}
i++;
}
while( i<n ) will run for n+1 times but we'll round it off to n times.
now here comes the fun part, k<n will not run for n times instead it will run for log log n times because here instead of incrementing k by 1,in each loop we are incrementing it by squaring it. now this means it'll take only log log n time for the loop. you'll understand this when you learn design and analysis of algorithm
Now we combine all the time complexity and we get n.log log n time here I hope you get it now.

Resources