Questions about Ruby koans about_classes.rb - ruby

Here're the codes from about_classes.rb. I'm not very sure about why the answers are [ ] and [:#name]
class Dog2
def set_name(a_name)
#name = a_name
end
def test_instance_variables_can_be_set_by_assigning_to_them
fido = Dog2.new
assert_equal [ ], fido.instance_variables
#In this case, fido doesn't have any instance_variables,
because it is assigned to a new "Dog2" Hash/class which has none methods?
fido.set_name("Fido")
assert_equal [:#name], fido.instance_variables
#In this case, fido has an instance_variable,
because it uses the set_name methods inherited from "Dog2" classes?
end
assert_raise(SyntaxError) do
eval "fido.#name"
# NOTE: Using eval because the above line is a syntax error.
end
#So Eval here means that if the above returns "fido.#name", give it a SyntaxError?
I added some comments under those 2 cases, see if I understand it correctly.

When the first assert_equal is called, the Dog2 instance (fido) has no instance variables, because none were defined in the initializer or in any other way.
When set_name is called the #name instance variable gets set, so by the time the second assert_equal is called the fido instance does have an instance variable, one, #name, so the fido.instance_variables method returns an array with that one symbol.
Update
In response to the questions you pose in the comments in your code sample:
No, your first two comments are not accurate. It's not because it has no methods, it's because it has no instance variables. The fido instance does have a method, the set_name method.
Your second comment is not accurate because there's no inheritance going on here, fido is an instance of Dog2 and so once the set_name method has been called it has an instance variable, because #name is initialized in that set_name method.
Your final comment/question about the eval is just because if the authors had actually written just fido.#name then the code itself would have failed to run, they wanted it to run but display that if you'd written fido.#name in your code then Ruby would have exited and refused to run your code because of that syntax error.
Another Update
After another question from the OP I wanted to just add, although #name exists inside the set_name method, the point really of this example is to show that in Ruby until set_name is called that #name variable doesn't exist yet. In other languages you would define all the instance variables up front, so they'd always exist for any instantiated object of that class.
Ruby is a much more dynamic language and so until that #name = a_name line of code is actually executed, the #name variable doesn't exist, so is not returned in fido.instance_variables
This would also be true even if that method is called, but that #name = a_name line isn't executed, so, eg.
class Dog2
def set_name a_name
if false
#name = a_name
end
end
end
fido = Dog2.new
fido.set_name "Fido"
fido.instance_variables # => []
Hope that helps.

Related

Ruby - How to access instance variables from classes with "self" methods?

Sorry that I have no clue how to title this, I'm having a hard time looking this up because I don't know how to say this. Anyway...
Let's say I have a class that looks like this for example:
class Run
def self.starting
print "starting..."
end
def self.finished
print "Finished!"
end
end
All of the methods in Run have self before them, meaning that I don't have to do run = Run.new and I can just do Run.starting. Now let's say that I wanted to add some instance variables...
class Run
attr_accessor :starting, :finished
def self.starting
print "starting..."
#starting = true
#finished = false
end
def self.finished
print "finished!"
#starting = false
#finished = true
end
end
What if I wanted to access those instance variables from outside the class? I know that something like print "#{Run.finished}" or print "#{Run.starting}" won't do anything. Can I do that without run = Run.new? Or should I just remove self and then use run = Run.new? (Sorry if this question is a mess.)
All of the methods in Run have self before them, meaning that I don't have to do run = Run.new and I can just do Run.starting
There's much more to it than this. In your case you're calling class methods. If you did runner = Runner.new - then you'd be calling instance methods (those are defined without self.
In general, if you need "the thing" to hold some kind of state (like #running = true) then you'd rather want to instantiate an object, and call those methods.
Now, #whatever are instance variables, and you don't have the access to them in class methods.
class Run
attr_reader :running
def start
#running = true
end
def stop
#running = false
end
end
runner = Run.new
runner.running # nil
runner.start
runner.running # true
runner.stop
runner.running # false
I'd recommend you doing some tutorial or basic level book on rails programming, find a chapter about objects and classes. Do some exercises.
In Ruby instance variables are just lexical variables scoped to an instance of a class. Since they are scoped to the instance they always act like a private variable.
If you want to provide access to an instance variable from the outside you create setter and getter methods. Thats what attr_accessor does.
class Person
attr_accessor :name
def initialize(name:)
#name = name
end
def hello
"Hello my name is #{#name}"
end
end
john = Person.new(name: 'John')
john.name = "John Smith"
puts john.hello # "Hello my name is John Smith"
puts john.name # "John Smith"
Methods defined with def self.foo are class methods which are also referred to as singleton methods. You can't access variables belonging to an instance from inside a class method since the recipient when calling the method is the class itself and not an instance of the class.
Ruby also has class variables which are shared by a class and its subclasses:
class Person
##count = 0
def initialize
self.class.count += 1
end
def self.count
##count
end
def self.count=(value)
##count = value
end
end
class Student < Person
end
Person.new
Student.new
puts Person.count # 2 - wtf!
And class instance variables that are not shared with subclasses:
class Person
#count = 0 # sets an instance variable in the eigenclass
def initialize
self.class.count += 1
end
def self.count
#count
end
def self.count=(value)
#count = value
end
end
class Student < Person
#count = 0 # sets its own class instance variable
end
Person.new
Student.new
puts Person.count # 1
Class variables are not used as often and usually hold references to things like database connections or configuration which is shared by all instances of a class.
You can't access instance variables from outside the instance. That is the whole point of instance variables.
The only thing you can access from outside the instance are (public) methods.
However, you can create a public method that returns the instance variable. Such a method is called an attribute reader in Ruby, other languages may call it a getter. In Ruby, an attribute reader is typically named the same as the instance variable, but in your case that is not possible since there are already methods with the names starting and finished. Therefore, we have to find some other names for the attribute readers:
class Run
def self.starting?
#starting
end
def self.finished?
#finished
end
end
Since this is a common operation, there are helper methods which generate those methods for you, for example Module#attr_reader. However, they also assume that the name of the attribute reader method is the same as the name of the instance variable, so if you were to use this helper method, it would overwrite the methods you have already written!
class << Run
attr_reader :starting, :finished
end
When you do this, you will get warnings (you always have warning turned on when developing, do you?) telling you that you have overwritten your existing methods:
run.rb:19: warning: method redefined; discarding old starting
run.rb:2: warning: previous definition of starting was here
run.rb:19: warning: method redefined; discarding old finished
run.rb:5: warning: previous definition of finished was here

Why do I not see instance variable after creation? (attr reader)

I have following code, which creates instance variables dynamically. If the instance variable does not exist, I use the no method error to create the attr_reader and attr_writer methods dynamically. All works fine, but I don't understand why I don't see the #anything instance variable after having created the first attr_reader.
require "pry-byebug"
class UberHash
attr_accessor :color
def initialize
#color = nil
end
def method_missing(m, *args, &block)
if m.match(/=/)
puts "create attr writer"
self.instance_variable_set("##{m[0..-2]}", args[0])
else
puts "create attr reader"
self.instance_variable_get("##{m}")
end
end
end
uber_hash = UberHash.new
puts "call 1 .................."
p "uber_hash.anything: #{uber_hash.anything}"
p "uber_hash.inspect: #{uber_hash.inspect}"
p uber_hash.anything = "hola"
p uber_hash.inspect
With following results:
call 1 ..................
create attr reader
"uber_hash.anything: "
"uber_hash.inspect: #<UberHash:0x00007f851b1e41a8 #color=nil>"
"#<UberHash:0x00007f851b1e41a8 #color=nil>"
create attr writer
"hola"
"#<UberHash:0x00007f851b1e41a8 #color=nil, #anything=\"hola\">"
After creating the first instance variable anything, with the method instnace_variable_set, I understand that I create an attr_reader right?
Why do I not see the #anything instance variable if I inspect the instance?
You don't see the instance variable in the first inspect. You expect it the be there because in previous line you call uber_hash.anything, right?
Well, the uber_hash.anything call evaluates the else in the #method_missing conditional: self.instance_variable_get("##{m}") - that's why no instance variable is set.
Also, in #method_missing conditional you print two messages: puts "create attr writer" and puts "create attr reader" - they are wrong. It should be: puts "create instance variable" and puts "read instance variable"
After creating the first instance variable anything, with the method instnace_variable_set, I understand that I create an attr_reader right?
No, that is not correct. Your class never creates (or runs) attr_reader. Try this (after running your example commands)
p( uber_hash.methods - Object.new.methods )
and you see only the methods additionally defined in your class be [:color, :color=, :method_missing] in your class.
The method :color is defined because of attr_accessor :color. Remember attr_accessor etc is just a shortcut to define methods.
By contrast, the method :anything is not defined because your class has never defined the method.
Instead, in your class, every time a method uber_hash.anything is called, uber_hash.method_missing is run and does the job, that is, manipulation or viewing of the instance variable #anything.
Secondly, while instance_variable_set does set a value to an instance variable (and creates it if it does not exists), instance_variable_get refers to it only if it exists, else returns nil and does not create an instance variable. That is why #anything is created after instance_variable_set, but not just after instance_variable_get. Try this to see the point (after your definition of the class).
class UberHash
def test_pr
print 'color='; p instance_variable_get("#color")
print 'other='; p instance_variable_get("#other")
p instance_variables # => #other is not defined
print 'other='; p instance_variable_set("#other", 99)
p instance_variables # => #other is NOW defined
end
end
uber_hash.test_pr
Consequently, the behaviour you see is perfectly legitimate.
Note: this past answer explains it.

Test to check if attribute is assigned fails

I'm trying out some of the exercises over on exercism. Each exercise comes with a set of pre-written tests that we need to make pass. The problem I'm currently working on asks us to write a Robot class. Each robot should come with a method called name that sets a default name. I'm doing that like this:
class Robot
attr_accessor :name
def self.name
#name = DateTime.now.strftime("%y%^b%k%M%S")
#name
end
end
The problem is that the first test (I'm skipping over the rest for now) keeps failing. Here's the test:
def test_has_name
# rubocop:disable Lint/AmbiguousRegexpLiteral
assert_match /^[A-Z]{2}\d{3}$/, Robot.new.name
# rubocop:enable Lint/AmbiguousRegexpLiteral
end
I'm not using the rubocop gem so I've left the commented lines as is. The test fails with this error:
1) Failure:
RobotTest#test_has_name [robot-name/robot_name_test.rb:7]:
Expected /^[A-Z]{2}\d{3}$/ to match nil.
I suppose the biggest problem is that I don't really understand the error and I don't know if I need to install rubocop and uncomment those lines above or of my code is just plain wrong. Any help at all with this would be much appreciated.
There is number of issues with your code.
First, you define accessor :name, but you don't have initialize method.
What you have defined, is a class method name, which would work if you call Robot.name.
To make your class work, it should look like this:
class Robot
def initialize
#name = DateTime.now.strftime("%y%^b%k%M%S")
end
end
Robot.new.name
#=> "15MAY150035"
Or You would do
class Robot
def name
DateTime.now.strftime("%y%^b%k%M%S")
end
end
Robot.new.name
#=> "15MAY150649"
Also, in Ruby last line in method is already what would be returned, so you don't have to write #name here:
def self.name
#name = DateTime.now.strftime("%y%^b%k%M%S")
#name # useless
end
Furthermore, variable #name is useless here, since method name either way will return DateTime object.
You have to make sure you understand what is what in Ruby.
Your code defines name to be a method on the Robot class (that's what the self indicates; and #name here will be setting a member variable on the class object). You need to provide a way for each instance to have a name.
As a secondary concern, your method changes the name everytime name is called. You probably want to set it once (when the robot is initialized, probably!), then return that each time.
Your method is a class method. Which means that Robot.name will give you the name, while Robot.new.name is nil.
You want to use:
def name
#code
end
Instead of self.name.
You can also set name in the initialize method:
def initialize
#name = 'RB123'
end

I guess some Ruby internals

class MyClass
def instance_variable=(var)
puts "inside getter"
instance_variable = var
end
def function_1
self.instance_variable = "whatever"
end
def function_2
#instance_variable = "whatever"
end
end
myclass = MyClass.new
myclass.function1
results wiht "inside getter" on the console
myclass.function2
does not.
Im new to Ruby, do not know the difference, couldnt find it on the web...
Thanks in advance!
EDIT:
I assumed that by appending the "=", I overwrite a getter method for an implicitly defined instance variable "instance_variable."
That's also the reason why I called it that way.
Im not used to be allowed to use "=" in function names.
Thats why I assumed it would had some special meaning.
Thanks for your help.
EDIT2:
I just thought I really overwrite the assignment and not only the getter. I got it all mixed up.
Sorry and Thanks.
You have (misleading) named your setter instance_variable. It is not an instance variable, it is a method that sets an instance variable.
When you call self.instance_variable= you are calling that method. When you set #instance_variable directly you are setting the variable itself, and that is why the setter method is not called.
A more idiomatic naming convention would be something like:
def name=(value)
#name = value
end
Of course, for simply, pass-through type getters and setters you can use
attr_reader :name #generates getter only
attr_writer :name #generates setter only, not very common
attr_accessor :name #generates getter and setter
The above methods are syntactic sugar which generate the get and/or set methods for you. They can be overriden later to provide additional functionality if needed.
EDIT: I see that you have made an update and just wanted to point out that this method doesn't set an instance variable at all:
def instance_variable=(var)
puts "inside getter"
instance_variable = var
end
In this case instance_variable is simply a local variable and will be discarded as soon as the method exits. Local variables take precedence over instance methods, and instance variables always begin with a # symbol.

What is attr_accessor in Ruby?

I am having a hard time understanding attr_accessor in Ruby.
Can someone explain this to me?
Let's say you have a class Person.
class Person
end
person = Person.new
person.name # => no method error
Obviously we never defined method name. Let's do that.
class Person
def name
#name # simply returning an instance variable #name
end
end
person = Person.new
person.name # => nil
person.name = "Dennis" # => no method error
Aha, we can read the name, but that doesn't mean we can assign the name. Those are two different methods. The former is called reader and latter is called writer. We didn't create the writer yet so let's do that.
class Person
def name
#name
end
def name=(str)
#name = str
end
end
person = Person.new
person.name = 'Dennis'
person.name # => "Dennis"
Awesome. Now we can write and read instance variable #name using reader and writer methods. Except, this is done so frequently, why waste time writing these methods every time? We can do it easier.
class Person
attr_reader :name
attr_writer :name
end
Even this can get repetitive. When you want both reader and writer just use accessor!
class Person
attr_accessor :name
end
person = Person.new
person.name = "Dennis"
person.name # => "Dennis"
Works the same way! And guess what: the instance variable #name in our person object will be set just like when we did it manually, so you can use it in other methods.
class Person
attr_accessor :name
def greeting
"Hello #{#name}"
end
end
person = Person.new
person.name = "Dennis"
person.greeting # => "Hello Dennis"
That's it. In order to understand how attr_reader, attr_writer, and attr_accessor methods actually generate methods for you, read other answers, books, ruby docs.
attr_accessor is just a method. (The link should provide more insight with how it works - look at the pairs of methods generated, and a tutorial should show you how to use it.)
The trick is that class is not a definition in Ruby (it is "just a definition" in languages like C++ and Java), but it is an expression that evaluates. It is during this evaluation when the attr_accessor method is invoked which in turn modifies the current class - remember the implicit receiver: self.attr_accessor, where self is the "open" class object at this point.
The need for attr_accessor and friends, is, well:
Ruby, like Smalltalk, does not allow instance variables to be accessed outside of methods1 for that object. That is, instance variables cannot be accessed in the x.y form as is common in say, Java or even Python. In Ruby y is always taken as a message to send (or "method to call"). Thus the attr_* methods create wrappers which proxy the instance #variable access through dynamically created methods.
Boilerplate sucks
Hope this clarifies some of the little details. Happy coding.
1 This isn't strictly true and there are some "techniques" around this, but there is no syntax support for "public instance variable" access.
attr_accessor is (as #pst stated) just a method. What it does is create more methods for you.
So this code here:
class Foo
attr_accessor :bar
end
is equivalent to this code:
class Foo
def bar
#bar
end
def bar=( new_value )
#bar = new_value
end
end
You can write this sort of method yourself in Ruby:
class Module
def var( method_name )
inst_variable_name = "##{method_name}".to_sym
define_method method_name do
instance_variable_get inst_variable_name
end
define_method "#{method_name}=" do |new_value|
instance_variable_set inst_variable_name, new_value
end
end
end
class Foo
var :bar
end
f = Foo.new
p f.bar #=> nil
f.bar = 42
p f.bar #=> 42
attr_accessor is very simple:
attr_accessor :foo
is a shortcut for:
def foo=(val)
#foo = val
end
def foo
#foo
end
it is nothing more than a getter/setter for an object
Basically they fake publicly accessible data attributes, which Ruby doesn't have.
It is just a method that defines getter and setter methods for instance variables. An example implementation would be:
def self.attr_accessor(*names)
names.each do |name|
define_method(name) {instance_variable_get("##{name}")} # This is the getter
define_method("#{name}=") {|arg| instance_variable_set("##{name}", arg)} # This is the setter
end
end
If you are familiar with OOP concept, You must familiar with getter and setter method.
attr_accessor does the same in Ruby.
Getter and Setter in General Way
class Person
def name
#name
end
def name=(str)
#name = str
end
end
person = Person.new
person.name = 'Eshaan'
person.name # => "Eshaan"
Setter Method
def name=(val)
#name = val
end
Getter method
def name
#name
end
Getter and Setter method in Ruby
class Person
attr_accessor :name
end
person = Person.new
person.name = "Eshaan"
person.name # => "Eshaan"
Simple Explanation Without Any Code
Most of the above answers use code. This explanation attempts to answer it without using any, via an analogy/story:
Outside parties cannot access internal CIA secrets
Let's imagine a really secret place: the CIA. Nobody knows what's happening in the CIA apart from the people inside the CIA. In other words, external people cannot access any information in the CIA. But because it's no good having an organisation that is completely secret, certain information is made available to the outside world - only things that the CIA wants everyone to know about of course: e.g. the Director of the CIA, how environmentally friendly this department is compared to all other government departments etc. Other information: e.g. who are its covert operatives in Iraq or Afghanistan - these types of things will probably remain a secret for the next 150 years.
If you're outside the CIA you can only access the information that it has made available to the public. Or to use CIA parlance you can only access information that is "cleared".
The information that the CIA wants to make available to the general public outside the CIA are called: attributes.
The meaning of read and write attributes:
In the case of the CIA, most attributes are "read only". This means if you are a party external to the CIA, you can ask: "who is the director of the CIA?" and you will get a straight answer. But what you cannot do with "read only" attributes is to make changes changes in the CIA. e.g. you cannot make a phone call and suddenly decide that you want Kim Kardashian to be the Director, or that you want Paris Hilton to be the Commander in Chief.
If the attributes gave you "write" access, then you could make changes if you want to, even if you were outside. Otherwise, the only thing you can do is read.
In other words accessors allow you to make inquiries, or to make changes, to organisations that otherwise do not let external people in, depending on whether the accessors are read or write accessors.
Objects inside a class can easily access each other
On the other hand, if you were already inside the CIA, then you could easily call up your CIA operative in Kabul because this information is easily accessible given you are already inside. But if you're outside the CIA, you simply will not be given access: you will not be able to know who they are (read access), and you will not be able to change their mission (write access).
Exact same thing with classes and your ability to access variables, properties and methods within them. HTH! Any questions, please ask and I hope i can clarify.
I faced this problem as well and wrote a somewhat lengthy answer to this question. There are some great answers on this already, but anyone looking for more clarification, I hope my answer can help
Initialize Method
Initialize allows you to set data to an instance of an object upon creation of the instance rather than having to set them on a separate line in your code each time you create a new instance of the class.
class Person
def initialize(name)
#name = name
end
def greeting
"Hello #{#name}"
end
end
person = Person.new("Denis")
puts person.greeting
In the code above we are setting the name “Denis” using the initialize method by passing Dennis through the parameter in Initialize. If we wanted to set the name without the initialize method we could do so like this:
class Person
attr_accessor :name
# def initialize(name)
# #name = name
# end
def greeting
"Hello #{name}"
end
end
person = Person.new
person.name = "Dennis"
puts person.greeting
In the code above, we set the name by calling on the attr_accessor setter method using person.name, rather than setting the values upon initialization of the object.
Both “methods” of doing this work, but initialize saves us time and lines of code.
This is the only job of initialize. You cannot call on initialize as a method. To actually get the values of an instance object you need to use getters and setters (attr_reader (get), attr_writer(set), and attr_accessor(both)). See below for more detail on those.
Getters, Setters (attr_reader, attr_writer, attr_accessor)
Getters, attr_reader: The entire purpose of a getter is to return the value of a particular instance variable. Visit the sample code below for a breakdown on this.
class Item
def initialize(item_name, quantity)
#item_name = item_name
#quantity = quantity
end
def item_name
#item_name
end
def quantity
#quantity
end
end
example = Item.new("TV",2)
puts example.item_name
puts example.quantity
In the code above you are calling the methods “item_name” and “quantity” on the instance of Item “example”. The “puts example.item_name” and “example.quantity” will return (or “get”) the value for the parameters that were passed into the “example” and display them to the screen.
Luckily in Ruby there is an inherent method that allows us to write this code more succinctly; the attr_reader method. See the code below;
class Item
attr_reader :item_name, :quantity
def initialize(item_name, quantity)
#item_name = item_name
#quantity = quantity
end
end
item = Item.new("TV",2)
puts item.item_name
puts item.quantity
This syntax works exactly the same way, only it saves us six lines of code. Imagine if you had 5 more state attributable to the Item class? The code would get long quickly.
Setters, attr_writer: What crossed me up at first with setter methods is that in my eyes it seemed to perform an identical function to the initialize method. Below I explain the difference based on my understanding;
As stated before, the initialize method allows you to set the values for an instance of an object upon object creation.
But what if you wanted to set the values later, after the instance was created, or change them after they have been initialized? This would be a scenario where you would use a setter method. THAT IS THE DIFFERENCE. You don’t have to “set” a particular state when you are using the attr_writer method initially.
The code below is an example of using a setter method to declare the value item_name for this instance of the Item class. Notice that we continue to use the getter method attr_reader so that we can get the values and print them to the screen, just in case you want to test the code on your own.
class Item
attr_reader :item_name
def item_name=(str)
#item_name = (str)
end
end
The code below is an example of using attr_writer to once again shorten our code and save us time.
class Item
attr_reader :item_name
attr_writer :item_name
end
item = Item.new
puts item.item_name = "TV"
The code below is a reiteration of the initialize example above of where we are using initialize to set the objects value of item_name upon creation.
class Item
attr_reader :item_name
def initialize(item_name)
#item_name = item_name
end
end
item = Item.new("TV")
puts item.item_name
attr_accessor: Performs the functions of both attr_reader and attr_writer, saving you one more line of code.
I think part of what confuses new Rubyists/programmers (like myself) is:
"Why can't I just tell the instance it has any given attribute (e.g., name) and give that attribute a value all in one swoop?"
A little more generalized, but this is how it clicked for me:
Given:
class Person
end
We haven't defined Person as something that can have a name or any other attributes for that matter.
So if we then:
baby = Person.new
...and try to give them a name...
baby.name = "Ruth"
We get an error because, in Rubyland, a Person class of object is not something that is associated with or capable of having a "name" ... yet!
BUT we can use any of the given methods (see previous answers) as a way to say, "An instance of a Person class (baby) can now have an attribute called 'name', therefore we not only have a syntactical way of getting and setting that name, but it makes sense for us to do so."
Again, hitting this question from a slightly different and more general angle, but I hope this helps the next instance of class Person who finds their way to this thread.
Simply put it will define a setter and getter for the class.
Note that
attr_reader :v is equivalant to
def v
#v
end
attr_writer :v is equivalant to
def v=(value)
#v=value
end
So
attr_accessor :v which means
attr_reader :v; attr_writer :v
are equivalant to define a setter and getter for the class.
Simply attr-accessor creates the getter and setter methods for the specified attributes
Another way to understand it is to figure out what error code it eliminates by having attr_accessor.
Example:
class BankAccount
def initialize( account_owner )
#owner = account_owner
#balance = 0
end
def deposit( amount )
#balance = #balance + amount
end
def withdraw( amount )
#balance = #balance - amount
end
end
The following methods are available:
$ bankie = BankAccout.new("Iggy")
$ bankie
$ bankie.deposit(100)
$ bankie.withdraw(5)
The following methods throws error:
$ bankie.owner #undefined method `owner'...
$ bankie.balance #undefined method `balance'...
owner and balance are not, technically, a method, but an attribute. BankAccount class does not have def owner and def balance. If it does, then you can use the two commands below. But those two methods aren't there. However, you can access attributes as if you'd access a method via attr_accessor!! Hence the word attr_accessor. Attribute. Accessor. It accesses attributes like you would access a method.
Adding attr_accessor :balance, :owner allows you to read and write balance and owner "method". Now you can use the last 2 methods.
$ bankie.balance
$ bankie.owner
Despite the large number of existing answers, none of them seems to me to explain the actual mechanism involved here. It's metaprogramming; it takes advantage of the following two facts:
You can modify a module / class on the fly
A module / class declaration is itself executable code
Okay, so imagine the following:
class Nameable
def self.named(whatvalue)
define_method :name do whatvalue end
end
end
We are declaring a class method named which, when called with a value, creates an instance method called name which returns that value. That is the metaprogramming part.
Now we'll subclass that class:
class Dog < Nameable
named "Fido"
end
What on earth did we just do? Well, in the class declaration, executable code executes with reference to the class. So the bare word named is actually a call to the class method named, which we inherited from Nameable; and we are passing the string "Fido" as the argument.
And what does the class method named do? It creates an instance method called name, which returns that value. So now, behind the scenes, Dog has a method that looks like this:
def name
"Fido"
end
Don't believe me? Then watch this little move:
puts Dog.new.name #=> Fido
Why did I tell you all that? Because what I just did with named for Nameable is almost exactly what attr_accessor does for Module. When you say attr_accessor you are calling a class method (inherited from Module) that creates instance methods. In particular, it creates a getter and setter method for the instance property whose name you provide as argument, so that you don't have to write those getter and setter methods yourself.
Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (#name) and a corresponding access method to read it. Also creates a method called name= to set the attribute.
module Mod
attr_accessor(:one, :two)
end
Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
To summarize an attribute accessor aka attr_accessor gives you two free methods.
Like in Java they get called getters and setters.
Many answers have shown good examples so I'm just going to be brief.
#the_attribute
and
#the_attribute=
In the old ruby docs a hash tag # means a method.
It could also include a class name prefix...
MyClass#my_method
I am new to ruby and had to just deal with understanding the following weirdness. Might help out someone else in the future. In the end it is as was mentioned above, where 2 functions (def myvar, def myvar=) both get implicitly for accessing #myvar, but these methods can be overridden by local declarations.
class Foo
attr_accessor 'myvar'
def initialize
#myvar = "A"
myvar = "B"
puts #myvar # A
puts myvar # B - myvar declared above overrides myvar method
end
def test
puts #myvar # A
puts myvar # A - coming from myvar accessor
myvar = "C" # local myvar overrides accessor
puts #myvar # A
puts myvar # C
send "myvar=", "E" # not running "myvar =", but instead calls setter for #myvar
puts #myvar # E
puts myvar # C
end
end
Attributes and accessor methods
Attributes are class components that can be accessed from outside the object. They are known as properties in many other programming languages. Their values are accessible by using the "dot notation", as in object_name.attribute_name. Unlike Python and a few other languages, Ruby does not allow instance variables to be accessed directly from outside the object.
class Car
def initialize
#wheels = 4 # This is an instance variable
end
end
c = Car.new
c.wheels # Output: NoMethodError: undefined method `wheels' for #<Car:0x00000000d43500>
In the above example, c is an instance (object) of the Car class. We tried unsuccessfully to read the value of the wheels instance variable from outside the object. What happened is that Ruby attempted to call a method named wheels within the c object, but no such method was defined. In short, object_name.attribute_name tries to call a method named attribute_name within the object. To access the value of the wheels variable from the outside, we need to implement an instance method by that name, which will return the value of that variable when called. That's called an accessor method. In the general programming context, the usual way to access an instance variable from outside the object is to implement accessor methods, also known as getter and setter methods. A getter allows the value of a variable defined within a class to be read from the outside and a setter allows it to be written from the outside.
In the following example, we have added getter and setter methods to the Car class to access the wheels variable from outside the object. This is not the "Ruby way" of defining getters and setters; it serves only to illustrate what getter and setter methods do.
class Car
def wheels # getter method
#wheels
end
def wheels=(val) # setter method
#wheels = val
end
end
f = Car.new
f.wheels = 4 # The setter method was invoked
f.wheels # The getter method was invoked
# Output: => 4
The above example works and similar code is commonly used to create getter and setter methods in other languages. However, Ruby provides a simpler way to do this: three built-in methods called attr_reader, attr_writer and attr_acessor. The attr_reader method makes an instance variable readable from the outside, attr_writer makes it writeable, and attr_acessor makes it readable and writeable.
The above example can be rewritten like this.
class Car
attr_accessor :wheels
end
f = Car.new
f.wheels = 4
f.wheels # Output: => 4
In the above example, the wheels attribute will be readable and writable from outside the object. If instead of attr_accessor, we used attr_reader, it would be read-only. If we used attr_writer, it would be write-only. Those three methods are not getters and setters in themselves but, when called, they create getter and setter methods for us. They are methods that dynamically (programmatically) generate other methods; that's called metaprogramming.
The first (longer) example, which does not employ Ruby's built-in methods, should only be used when additional code is required in the getter and setter methods. For instance, a setter method may need to validate data or do some calculation before assigning a value to an instance variable.
It is possible to access (read and write) instance variables from outside the object, by using the instance_variable_get and instance_variable_set built-in methods. However, this is rarely justifiable and usually a bad idea, as bypassing encapsulation tends to wreak all sorts of havoc.
Hmmm. Lots of good answers. Here is my few cents on it.
attr_accessor is a simple method that helps us in cleaning(DRY-ing) up the repeating getter and setter methods.
So that we can focus more on writing business logic and not worry about the setters and getters.
The main functionality of attr_accessor over the other ones is the capability of accessing data from other files.
So you usually would have attr_reader or attr_writer but the good news is that Ruby lets you combine these two together with attr_accessor. I think of it as my to go method because it is more well rounded or versatile.
Also, peep in mind that in Rails, this is eliminated because it does it for you in the back end. So in other words: you are better off using attr_acessor over the other two because you don't have to worry about being to specific, the accessor covers it all. I know this is more of a general explanation but it helped me as a beginner.
Hope this helped!

Resources