Can someone please explain the difference between formula in general and well-formed formula?
Is it possible to determine the truth value of an ill-formed formula?
The validity of a formula, or its truth value (or more generally its evaluation), can only be assessed if the formula is well formed with respect to a given set of syntax rules.
So a formula in general, and in the context of math or logic, means well-formed formula.
Strictly speaking, you can say that if your symbols include '+' | '(' | ')' | 'a'-'z', a formula, in the strict sense, is any string formed by these symbols. For example, a((++z is a formula.
But one must also look at the rules of construction of a formula. And if the rules are, for example
F,E ::= F + E | (F) | 'a'-'z'
then your formula is not well formed.
Related
L={w|w€{a,b}, number of a is divisible by 2 }is the language. Can someone help me with the regular grammer of this?
The language is the set of all strings of a and b with an even number of a. This is a regular language and the goal is to produce a regular grammar for it.
Unless the regular grammar you're going to need is trivial, I would recommend always writing down the finite automaton first, and then converting it into a grammar. Converting a finite automaton into a grammar is very easy, and solving this problem is easy with a finite automaton. We will have two states: one will correspond to having seen an even number of a, the other an odd number. The state corresponding to having seen an even number of a will be accepting, and seeing b will not cause us to change states. The DFA is therefore:
b b
/-\ /-\
| V | V
----->(q0)--a-->(q1)
^ |
| a |
\---------/
A regular grammar for this can be formed by writing the transitions down as productions, using the states as nonterminal symbols, and including an empty production for the accepting state:
(q0) -> b(q0) | a(q1) | e
(q1) -> b(q1) | a(q0)
For the sake of completeness, you could run some other algorithms on the grammar or automaton and get a regular expression, maybe like this: b*(ab*ab*)* (just wrote that down, not sure if it's right or not, left as an exercise).
When attempting to solve logic problems on a computer, it is usual to first convert them to CNF, because the best solving algorithms expect CNF as input.
For propositional logic, the textbook rules for this conversion are simple, but if you apply them as is, the result is one of the very rare cases where a program encounters double exponential resource consumption without being specifically constructed to do so:
a <=> (b <=> (c <=> ...))
with N variables, generates 2^2^N clauses, one exponential blowup in the conversion of equivalence to AND/OR, and another in the distribution of OR into AND.
The solution to this is to rename subterms. If we rewrite the above as something like
r <=> (c <=> ...)
a <=> (b <=> r)
where r is a fresh symbol that is being defined to be equal to a subterm - in general, we may need O(N) such symbols - the exponential blowups can be avoided.
Unfortunately, this runs into a problem when we try to extend it to first-order logic. Using TPTP notation where ? means 'there exists' and variables begin with capital letters, consider
a <=> ?[X]:p(X)
Admittedly this case is simple enough that there is no actual need to rename the subterm, but it's necessary to use a simple case for illustration, so suppose we are using an algorithm that just automatically renames arguments of the equivalence operator; the point generalizes to more complex cases.
If we try the above trick and rename the ? subterm, we get
r <=> ?[X]:p(X)
Existential variables are converted to Skolem symbols, so that ends up as
r <=> p(s)
The original formula then expands to
(~a | r) & (a | ~r)
Which is by construction equivalent to
(~a | p(s)) & (a | ~p(s))
But this is not correct! Suppose we had not done the renaming, but just expanded the original formula as it was, we would get
(~a | ?[X]:p(X)) & (a | ~?[X]:p(X))
(~a | ?[X]:p(X)) & (a | ![X]:~p(X))
(~a | p(s)) & (a | ~p(X))
which is critically different from the version we got with the renaming.
The problem is that equivalence needs both the positive and negative versions of each argument, but applying negation to terms that contain universal or existential quantifiers, structurally changes those terms; you cannot just encapsulate them in a definition, then apply the negation to the defined symbol.
The upshot of this is that when you have equivalence and the arguments may contain such quantifiers, you actually need to recur through each argument twice, once for the positive version, once for the negative. This suffices to bring back the existential blowup we hoped to avoid by doing the renaming. As far as I can see, this problem is not caused by the way a particular algorithm works, but by the nature of the task.
So my question:
Given an input formula that may contain arbitrary nesting of equivalence and quantifiers, is there any algorithm that will correctly turn this to CNF with a polynomial rather than exponential number of clauses?
As you observed, an existential such as ∃X.p(X) is not in fact equivalent to a Skolemized expression p(S). Its negation ¬∃X.p(X) is not equivalent to ¬p(S), but to ∀Y.¬p(Y).
Possible approaches that avoid the exponential blow-up:
Convert existentials such as ∃X.p(X) to universals such as ¬∀Y.p(Y), or vice versa, so you have a canonical form. Skolemize at a later step.
Remember when you convert that your p(S) is a Skolemized existential, and that its negation is ∀Y.¬p(Y).
Define terms equivalent to universals and existentials, such that a represents ∀Y.p(Y) and ¬a then represents ¬∀Y.p(Y), or equivalently, ∃X.¬p(X).
Use the symmetry of Boolean duals, so that the same transformations apply with AND and OR swapped, De Morgan’s Laws, and the equivalence between existentials and negated universals, to restore the symmetry between the expansions of r and ~r. The negations in the conversion between universals and existentials and in De Morgan's Laws cancel each other out, and the duality of switching AND and OR means you can re-use the result on the left to generate the one on the right mechanically again?
Given that you need to support ALL and NOT ALL statements anyway, this should not create any new problems. Just canonicalize and use the same approach you would for a universal.
If you’re solving by converting to SAT, your terms can represent universals, too. So, in your example, you’re trying to replace a with r, but you can still use ~a, equivalent to the negative universal.
In your expressions. you’d still use (~a | r) & (a | ~r), but expand ~r to its correct rather than the incorrect value. That example is trivial, since that’s just ~a, but you’d normally define r as equivalent to a more complex transformation, and in that case you need to remember what both r and ~r represent. It is not really a simple mechanical transformation of the Skolemized expression.
In this example, I’m not sure why it’s a problem that (~a | r) & (a | ~r) is equivalent to (~a | r) & (a | ~a), which simplifies to (~a | r). That’s not going to give you exponential blow-up? When you translate back to first-order predicate logic, make the correct translation.
Update
Thanks for clarifying what the problem was in chat. As I currently think I understand it, what you have is an equivalence with a left and a right side, which contains other nested equivalences, and you want to expand both the equivalence and its negation. The problem is that, because the negation does not have symmetrical form, you need to recurse twice for each nested equivalence in the tree, once when expanding the equivalence and once when expanding its negation?
You should define a transformation that generates the negative expansion from the positive expansion in linear time, and divide-and-conquer the expressions containing nested equivalences using that. This seems to be what you were after with the ~p(S) transformation.
To do this, you recall that ¬∃X.p(X) is equivalent to ∀X.¬p(X), and vice versa. Then if you’ve expanded p(x) into normal form as conjunctions and disjunctions, De Morgan’s Laws lets you turn an expression like ¬(a ∨ ¬b) into ¬a ∧ b. The inner ¬ on the quantifier transformation and the outer ¬ on the De Morgan transformation cancel each other out. Finally, the dual of any Boolean equivalence remains valid when you replace each ∨ and ∧ with the other and any atom a or ¬a with its inverse.
So, while I might be making an error, especially at 1 AM, it looks to me like what you want is the dual transformation that substitutes:
An outer ∃ for ∀ and vice versa
∧ for ∨ and vice versa
Each term t with ¬t and vice versa
Apply this to the expansion of the positive equivalence to generate the negative dual in time proportional to its length, without further recursion.
What is the exact difference between Well-formed formula and a proposition in propositional logic?
There's really not much given about Wff in my book.
My book says: "Propositions are also called sentences or statements. Another term formulae or well-formed formulae also refer to the same. That is, we may also call Well formed formula to refer to a proposition". Does that mean they both are the exact same thing?
Proposition: A statement which is true or false, easy for people to read but hard to manipulate using logical equivalences
WFF: An accurate logical statement which is true or false, there should be an official rigorus definition in your textbook. There are 4 rules they must follow. Harder for humans to read but much more precise and easier to manipulate
Example:
Proposition : All men are mortal
WFF: Let P be the set of people, M(x) denote x is a man and S(x)
denote x is mortal Then for all x in P M(x) -> S(x)
It is most likely that there is a typo in the book. In the quote Propositions are also called sentences or statements. Another term formulae or well-formed formulae also refer to the same. That is, we may also call Well formed formula to refer to a preposition, the word "preposition" should be "proposition".
Proposition :- A statement which is either true or false,but not both.
Propositional Form (necessary to understand Well Formed Formula) :- An assertion which contains at least one propositional variable.
Well Formed Formula :-A propositional form satisfying the following rules and any Wff(Well Formed Formula) can be derived using these rules:-
If P is a propositional variable then it is a wff.
If P is a propositional variable,then ~P is a wff.
If P and Q are two wffs then,(A and B),(A or B),(A implies B),(A is equivalent to B) are all wffs.
I have to write a program that tests whether two algebraic expressions are equivalent. It should follow MDAS precedence and parenthesis grouping. To solve the problem about precedence, I'm thinking I should implement a Infix to Postfix Notation converter for these expressions. But by doing this, I could not conclude their equivalence.
The program should look like this:
User Input: a*(a+b) = a*a + a*b
Output : Equivalent
For this problem I'm not allowed to use Computer Algebraic Systems or any external libraries. Please don't post the actual code if you have one, I just need an idea to work this problem out.
If you are not allowed to evaluate the expressions, you will have to parse them out into expression trees.
After that, I would get rid of all parenthesis by multiplying/dividing all members so a(b - c) becomes a*b - a*c.
Then convert all expressions back to strings, making sure you have all members alphabetically sorted (a*b, not b*a) ,remove all spaces and compare strings.
That's an idea:
You need to implement building expression tree first because it's a very natural representation of expression.
Then maybe you'll need to simplify it by open brackets and etc. using associative or distributive algebraic properties.
Then you'll have to compare trees. It's not obvious because you need to take care of all branch permutations in commutative operations and etc. E.g. you can sort them (I mean branches) and then compare for equality. Also you need to keep in mind possible renaming of parameters, i.e. a + b need to be equal x + y.
I'm writing an input file for OTTER that is very simple:
set(auto).
formula_list(usable).
all x y ([Nipah(x) & Encephalitis(y)] -> Causes(x,y)).
exists x y (Nipah(x) & Encephalitis(y)).
end_of_list.
I get this output for the search :
given clause #1: (wt=2) 2 [] Nipah($c2).
given clause #2: (wt=2) 2 [] Encephalitis($c1).
search stopped because sos empty
Why won't OTTER infer Causes($c2,$c1)?
EDIT:
I removed the square brackets from [Nipah(x) & Encephalitis(x)] and it worked. Why does this matter?
I'd answer with a question: Why did you use square brackets in the first place?
Look into Otter manual, Section 4.3, List Notation. Square brackets are used for lists, it's syntactic sugar that is expanded into special terms. In your case, it expanded to something like
all x y ($cons(Nipah(x) & Encephalitis(y), $nil) -> Causes(x,y)).
Why won't OTTER infer Causes($c2,$c1)?
Note that the resolution calculus is not complete in the sense that every formula provable in a given theory could be inferred by the calculus. This would be highly undesirable! Instead, resolution is only refutationally complete, meaning that if a given theory is
contradictory then the resolution will find a proof of the empty clause. So even if a clause C is a logical consequence of a set of clauses T, it doesn't mean that the resolution calculus can derive C from T. In your case, the fact that Causes($c2,$c1) follows from the input doesn't mean Otter has to derive it.