combining all possible results in one list in prolog - prolog

I'm trying to find the available slot which comes from the predicate quizslots/3 quizslot(Group, Day, Slot).
quizslot(group4, tuesday, 1).
quizslot(group4, thursday, 1).
quizslot(group6, saturday, 5).
This is my hypothesis but it doesn't seem to work fine.
available_timings(G,L):-
setof(X,quizslot(G,X,_),L).
I want the result for (group4,L), L = [tuesday,1,thursday,1].

Syntax of setof:
% Set of every FooResult
?- setof(FooResult,foo(X,Y,FooResult),Result).
[FooResult1, FooResult2, ..]
% Set of tuples of every input X and FooResult
?- setof((X,FooResult),foo(X,Y,FooResult),Result).
[(X1,FooResult1), (X2,FooResult2), ..]
% Set of lists of every input X and FooResult, ommitting input Y
?- setof([X,FooResult],foo(X,_,FooResult),Result).
[[X1,FooResult1], [X2,FooResult2], ..]
I think you get the point. As lurker stated in his answer above, you are trying to have the slot included in the result, however, you tell prolog to find all distinct quizslot-facts of the form:
quizslot(group G, day X, whatever slot)
Since this wildcard will match with any slot, you cannot retrieve the actual variable holding the slot, Prolog didn't bother retrieving the variable for you.
A correct usage would be, for example, one of the following
setof([Day,Slot], quizslot(Group,Day,Slot), Result) % List of lists
setof((Day,Slot), quizslot(Group,Day,Slot), Result) % List of tuples

Related

How to read from a list in GNU prolog?

So I have an assignment where I am to produce compatible meeting times between 3 different people. In the prolog file where I define predicates, there is a line given that has the name of the three people I am supposed to compare that reads as follows:
people([ann,bob,carla]).
Where we are supposed to match these names from a data file that defines facts, where a fact holds the following format:
free(ann,slot(time(7,0,am),time(9,0,am))).
My question is, how do I read through 'people' so that I can match names against each other?
My text book doesn't really explain prolog too well, and I am confused on what 'people' actually is (when I say what it actually is, I mean is 'people' a list? an array?) so I am having troubles even searching for a solution as to how to read through each name so I can compare them.
people([ann,bob,carla]). is a fact. The predicate people/1 holds a list of people names. In prolog you have different ways to get elements from a list.
The most "dirtiest" version is just to write the list with a fixed number of elements:
?- people([P1,P2,P3]).
P1 = ann,
P2 = bob,
P3 = carla ;
false.
You should not do this, because it works only for sets of 3 people and you would have to alter your code everytime a person leaves/enters.
Normally you go through a prolog list where you just get the first element Head and the rest of a list Tail:
?- people([Head|Tail]).
Head = ann,
Tail = [bob, carla] ;
false.
By redoing this you can traverse through the whole list until the list has only one element left. To do this you need a help predicate, which I named person. person takes as first element a List and as second a variable (or a name for test). It unificates the variable with one element from the list:
person([H|_], H).
person([_|T], P):-
person(T, P).
?- people(L), person(L,P).
L = [ann, bob, carla],
P = ann ;
L = [ann, bob, carla],
P = bob ;
L = [ann, bob, carla],
P = carla ;
false.
It works as follows: you have a list and imagine you see the first element from it only. You have two choices here: first you are ok with just taking the head element as an output, so the second attribute should be the exact same as the head element: person([H|_], H).
Or second: you ignore the head element and try to find something in the rest of the list by just calling the predicate again with a smaller list: person([_|T], P):- person(T, P).
When a variable starts with an underscore _ you are not interested in its content.
Also worth knowing: there are (most likely) inbuild helper predicates such as member/2 which give you back any member of a list:
?- people(L), member(P,L).
will give you any person in L.
To access a single timeslot for a choosen person you simply ask for the predicate free with your person from the list:
?- people(L), member(P,L), free(P,S).
If you want to find a timeslot where all persons in the list have to participate you need to define a helper predicate. I named it hastime
hastime([],_).
hastime([H|L], S):-
free(H,S),
hastime(L,S).
The output of ?- people(L), free(_,S), hastime(L,S). will give you a timeslot S where everone has time. Before calling hastime/2 you guess a Timeslot S. hastime/2 will look if all of the people have time on S: if there are no people (empty list []) you can accept any timeslot (_). If there are at least one person H in your list: ask if H has time on timeslot S and try if the other people from the list have this timeslot S free as well by calling the predicate for the tail list.
If prolog choose a slot where not all of them have time, it will go back to the point where it choosed the timeslot S and will look for a different value and try again. If there are no such timeslots it will return false.
Also hastime/2 can be used to find a timeslot by itself, but using it as a "generator" and test at the same time is a bit confusing.

Prolog return a list which contains only elements which are equal to head of the list

Hello I would like to ask a doubt I have with the following code:
principio([],[]).
principio([H],[H]).
principio([H,_|_],[H]).
principio([H,H|C],P) :-
principio([H|C],R),P=[H|R].
I would like a way to get from:
?- principio([222,333,101,202,12,222,13,222],X).
X = [222,222,222]
But in this moment I get just the head:
X = [222]
So, to keep it clear I'd like: all successive occurrences of the first element as a list.
My doubt is what does this assignment P=[H|R] why not to put just:
principio([H,H|C],P) :-
principio([H|C],P)
Also, how would you try to modify this to get the result I asked for?
Thank you
Here is two ways how you can narrow down the problem. 1st, start from an unexpectedly failing query. 2nd, start from a query that should fail but rather succeeds.
1st Diagnose unexpected incompleteness
Determine a most specific failing query
?- principio([222,333,101,202,12,222,13,222],[222,222,222]).
false.
Generalize the query
... as much as possible. I could do this manually, or I could let Prolog do the work for me. Here I use library(diadem):
?- use_module(diadem).
true.
?- principio([222,333,101,202,12,222,13,222],[222,222,222]).? Gen.
Gen = principio([222, 333|_], [_, _|_])
; Gen = (dif(A100, B100), principio([A100, B100|_], [_, _|_]))
; ... .
In other words: Not only does your original query fail, but also this generalization fails! Here, we only insist that the first two elements are different, and that the resulting list contains at least two elements — no matter which!
?- dif(X, Y), principio([X,Y|_],[_,_|_]).
Generalize your program
:- op(950, fy, *).
* _P_0.
principio([], _/*[]*/).
principio([_H], _/*[H]*/).
principio([H,_|_],[H]).
principio([H,H|C],P) :-
* principio([H|C],R),
* P=[H|R].
The error must reside in the little remaining part of your program. No need to read any further!
The problem is that for a list starting with two different elements you only have the clause principio([H,_|_],[H]).. So this part has to be generalized somehow.
2nd Diagnose unexpected unsoundness
Another way of finding the error would be to start with the unexpected solution:
?- principio([222,333,101,202,12,222,13,222],[222]).
true. % incorrect !!
And then reduce the size of the query as much as possible.
?- principio([222,222],[222]).
true. % incorrect !!
Now, specialize your program inserting false as long as above query succeeds:
principio([],[]) : - false.
principio([H],[H]) :- false.
principio([H,_|_],[H]).
principio([H,H|C],P) :- false,
principio([H|C],R),
P=[H|R].
The remaining visible part is the culprit! We have to revise it. What it says is:
Any list starting with two elements corresponds to the list with the first element only.
principio([],[]).
principio([H],[H]).
principio([H,D|Xs], [H|Hs]) :-
dif(H,D),
principio([H|Xs],[H|Hs]).
principio([H,H|Xs],[H|Hs]) :-
principio([H|Xs],Hs).
In addition to the very nice answer provided by #false (+s(0)), I would point out the possibility to use DCGs for the task. They usually yield easily readable code when describing lists (see comments beside the grammar rules):
principio([H|T],Hs) :-
phrase(heads([H|T],H),Hs).
heads([],_H) --> % in the empty list
[]. % there's no element matching H
heads([H|Xs],H) --> % if the head of the list matches H
[H], % it's in the list
heads(Xs,H). % same for the tail
heads([X|Xs],H) --> % if the head of the list is
{dif(X,H)}, % different from H it's not in the list
heads(Xs,H). % same for the tail
Thus your example query yields the desired result:
?- principio([222,333,101,202,12,222,13,222],X).
X = [222,222,222] ? ;
no

Prolog - Comparing Lists that have the same element on the same index

I've been working on Prolog for a few weeks right now. I am now trying to write a function in it called matching:
Write a predicate called matching with three parameters, all lists.
The third list must contain the index of the positions in which
the first two lists contain the same value.
If I run
matching([10,71,83,9,24,5,2],[8,71,26,9],Positions).
The results are:
?- matching([10,71,83,9,24,5,2],[8,71,26,9],Positions).
Positions = [] ;
Positions = [] ;
Positions = [_2420] ;
Positions = [_2420] ;
Positions = [_2420, _2432];...
The correct answer would be that Positions is bound to [1,3]. I have no idea what is wrong with my code. Any hint is appreciated.
A hint? Each of your matchingHelper clauses contains a mistake!
OK, a little more than a hint:
Base cases
Prolog should be giving you a warning about singleton variables here. ListofIndex is a variable, but it is only used in one place. Essentially this means that there is absolutely no constraint on this, and thus can be anything.
The correct thing would be that if either of the input lists is empty, the output is also empty.
matchingHelper([], _, , []).
matchingHelper(, [], _, []).
Equal case
This one you almost have correct, but the way you deal with ListOfIndex is backwards. You construct a NewListOfIndex based on the predicate arguments, and use that in the recursive call. The problem is that the ListOfIndex is actually the output! So you should instead construct the ListOfIndex based on the output from the recursive call.
matchingHelper([X|Xs], [X|Ys], Index, [Index|ListofIndex]) :-
Index2 is Index + 1,
matchingHelper(Xs, Ys, Index2, ListofIndex).
Unequal case
Just 2 little issues with this one. First is that this clause should only apply if X and Y are different. Just using a different variable name does not enforce this. Because there is a previous clause which handles the equal case, the first result prolog finds would be correct, but it will continue to find other, incorrect solutions because of this.
The second issue is that you don't increment the index. If you ignore the first element, the current index has to be incremented to reflect the current position.
matchingHelper([X|Xs], [Y|Ys], Index, ListofIndex) :-
X \= Y,
Index2 is Index + 1,
matchingHelper(Xs, Ys, Index2, ListofIndex).
Here's a sample run:
?- matching([10,71,83,9,24,5,2],[8,71,26,9],Positions).
Positions = [1, 3]
false

Prolog - Using Bagof

I've been stuck on a past paper question while studying for my exams.
The question is:
https://gyazo.com/ee2fcd88d67068e8cf7d478a98f486a0
I figured I've got to use findall/bagof/setof because I need to collect a set of solutions. Furthermore, setof seems appropriate because the list needs to be presented in descending order.
My solution so far is:
teams(List) :-
setof((Team, A),
(Team^team(Team, _, Wins, Draws, _), A is Wins*3 + Draws*1),
List).
However the problem is I don't quite get the answers all in one list. I'm very likely using Team^ incorrectly. I'd really appreciate pointers on how I can get a list of ordered tuples in terms of points. The output it gives me is:
X = [(queenspark,43)] ? ;
X = [(stirling,26)] ? ;
X = [(clyde,25)] ? ;
X = [(peterhead,35)] ? ;
X = [(rangers,63)] ? ;
Also, it's not really apparent what kind of order, if any it's in, so I'm also lost as to how setof is ordering.
Whats the best way to approach this question using setof?
Thanks.
Firstly, I would suggest to change (Team,A) to a pair representation A-Team with the A being in front since this is the total score of the team and thus the key you want to use for sorting. Then you would like to prefix the variables that should not be in the list with a ^ in front of the query you want to aggregate. See the following example:
?- setof(A-Team, P^Wins^Draws^L^(team(Team, P, Wins, Draws, L), A is Wins*3 + Draws*1), List).
List = [25-clyde,26-stirling,35-peterhead,43-queenspark,63-rangers]
Since you asked, consider the following query with the pair ordering flipped to Team-A for comparison reasons:
?- setof(Team-A,P^Wins^Draws^L^(team(Team,P,Wins,Draws,L), A is Wins*3 + Draws*1),List).
List = [clyde-25,peterhead-35,queenspark-43,rangers-63,stirling-26]
Now the resulting list is sorted with respect to the teamnames. So A-Team is the opportune choice. You could then use the predicate lists:reverse/2 to reverse the order to a descending list and then define an auxilary predicate pair_second/2 that you can use with apply:maplist/3 to get rid of the leading scores in the pairs:
:- use_module(library(lists)).
:- use_module(library(apply)).
% team(+Name, +Played, +Won, +Drawn, +Lost)
team(clyde,26,7,4,15).
team(peterhead,26,9,8,9).
team(queenspark,24,12,7,5).
team(rangers,26,19,6,1).
team(stirling,25,7,5,13).
pair_second(A-B,B). % 2nd argument is 2nd element of pair
teams(Results) :-
setof(A-Team,
P^Wins^Draws^L^(team(Team, P, Wins, Draws, L), A is Wins*3 + Draws*1),
List),
reverse(List,RList),
maplist(pair_second,RList,Results). % apply pair_second/2 to RList
If you query the predicate now you get the desired results:
?- teams(T).
T = [rangers,queenspark,peterhead,stirling,clyde]
Concerning your question in the comments: Yes, of course that is possible. You can write a predicate that describes a relation between a list of pairs and a list than only consists of the second element of the pairs. Let's call it pairlist_namelist/2:
pairlist_namelist([],[]).
pairlist_namelist([S-N|SNs],[N|Ns]) :-
pairlist_namelist(SNs,Ns).
Then you can define teams/1 like so:
teams(Results) :-
setof(A-Team,
P^Wins^Draws^L^(team(Team, P, Wins, Draws, L), A is Wins*3 + Draws*1),
List),
reverse(List,RList),
pairlist_namelist(RList,Results).
In this case, besides maplist/3, you don't need pair_second/2 either. Also you don't need to include :- use_module(library(apply)). The example query above yields the same result with this version.

Generating a list in prolog

Hello I want to make a program in Prolog, that given a list of numbers and a number, it appends all the concurences of position of the number in a second list.
For example for the list (5,10,4,5,6,5) and number =5 the new list should be
(1,4,6)
here is my code so far
positions(X, [X|_],1).
positions(X, [P|T], N) :- positions(X, T, N1), N is N1+1.
find(X, [H|T] ,Z) :-positions(X,[H|T],N) , append([],N,Z).
the positions returns the first concurrence of X in the list, but I don't know how to proceed. Can you help me?
If it's not an assignment, then you can benefit from using the built-ins findall/3 and nth1/3:
?- findall(Nth, nth1(Nth, [5,10,4,5,6,5], 5), Nths).
Nths = [1, 4, 6].
Taking just the nth1 phrase, and running that, you can see it is backtracking and finding multiple solutions, then we just use findall to collect them into a list.
?- nth1(Nth, [5,10,4,5,6,5], 5).
Nth = 1 ;
Nth = 4 ;
Nth = 6.
nth1/3, when using a variable for the first parameter, is saying 'give me a list index where where the 3rd parameter is found in the list of the second parameter.
You have some good ideas, but I would suggest a couple things:
1) In Prolog, it can be beneficial to give variables meaningful names
2) Use an accumulator and you will only need positions and append
3)Use a different base case
positions([Num|List],Num,[Index|SubResult],Index) :- Index2 is Index+1,
positions(List,Num,SubResult,Index2).
positions([NotNum|List],Num,Result,Index) :- NotNum \= Num,
Index2 is Index+1,
positions(List,Num,Result,Index2).
positions([],Num,[],Index).
In our first general case, we can see the numbers match, so we go find how many results are in our sublist, which we will call the SubResult and then push the current index on to our SubResult
The next general case, the numbers do not unify, and our Result IS the SubResult, so let's call them the same thing.
In our final case (the base case) we can see the list is empty, in this case we return an empty list as we cannot match against an empty list.
You can see that the above rules are order-independent, which is something very valuable in Prolog. This means you can arrange the rules in any order, and the semantics of your Prolog program remain unchanged. Using unification to achieve this will prevent future pain in debugging.
We can wrap our predicate in the following way
positions(Num, List, Positions) :- positions(List, Num, Positions, 1).
This will allow for queries of positions(5,[5,10,4,5,6,5],Positions).

Resources