Working around a very heavy encryption algorithm? - algorithm

I'm in the progress of building an API in NodeJS. Our main API is built in Java in which all the ids are encrypted (one example being AA35794C728A440F).
The Node API needs to use the same encryption algorithm for compatibility.
During testing of the API, I was surprised to find that it was only able to handle somewhere in the region of 25 to 40 (depending on the AWS EC2 instance I tested with) requests per second, and that the CPU was maxing out.
Digging into it, I found the issue was with the algorithm being used, specifically that it was performing 1000 md5 operations per key per encrypt/decrypt.
Removing the encryption gave me a massive increase in throughput, up to 1200 requests per second.
I'm stuck with the algorithm - it won't be possible to change without impacting many consumers of the API, so I need to find a way to work around it.
I was wondering what the most efficient way to handle this would be, keeping in mind that I need to be able to 'encrypt' or 'decrypt'?
My question isn't so much how to make the algorithm more efficient, given that I would like to avoid the 1000 md5 ops per id, but rather, an efficient of bypassing the actual encryption itself.
I was thinking of storing all the keys (up to maybe 2 or 3 million) in a map or a tree and then doing a lookup, however that would be mean lugging around 30-50MB of ids in the repository, plus consuming a lot of memory.

It sounds like, lacking any code, that a key derivation is being done on each invocation.
Key derivations are designed to be slow. Provide more information on what you are trying to accomplish and some code.

50MB of memory for cache doesn't sound that much to me... you could also use memcache (possibly AWS ElastiCache) to do the actual caching - this way it can be easily shared across multiple servers..

Related

Performance of bulk access vs single access in Hazelcast IMDG

We use IMDG locally as an in-process library, mainly for caching in maps.
Traditionally we accessed the elements in the map using single value access, invoking javax.cache.Cache#get, however we have an agenda of moving to a bulk access, using javax.cache.Cache#getAll. However when testing the bulk access performance-wise we found that statistically it works slower than looping over the keys and accessing one by one, which is quite surprising to say the least. I would expect to see at least a modest improvement in performance. Over the course of 4 hours of continuous execution of our code, the total access time to Hazelcast maps via bulk API was roughly 50% slower than single access to the same keys. I wonder how this can be explained.
We use version 3.2.15. I wonder if it makes sense to upgrade to 4.x.x and check there.
Thanks!

Best way to construct a cache key whose uniqueness is defined by 6 properties

Currently I am tasked to fix cache for an ecommerce like system whose prices depend on many factors. The cache backend is redis. For a given product the factors that influence the price are:
sku
channel
sub channel
plan
date
Currently the cache is structured like this in redis:
product1_channel1_subchannel1: {sku_1: {plan1: {2019-03-18: 2000}}}
The API caters to requests for multiple products, skus and all the factors above . So they decided to query all the data on a product_channel_subchannel level and filter the data in the app which is very slow. Also they have decided that, on a cache miss they will construct the cache for all skus for 90 days of data. This way only one request will face the wrath while the others gets benefited from it (only the catch is now we are busting cache more often which is also dragging the system down)
The downside of going with all these factors included in the keys is there will be too many keys. To ball park there are 400 products each made up of 20 skus with 20 channels, 200 subchannels 3 types of plans and 400 days of pricing. To avoid these many keys at some place we must group the data.
The system is currently receives about 10 rps and the has to respond within 100ms.
Question is:
Is the above cache structure fine? Or how do we go about flattening this structure?
How are caches stored in pricing systems in general. I feel like this a very trivial task nonetheless I find it very hard to justify my approaches
Is it okay to sacrifice one request to warm cache for bulk of the data? Or is it better to have a cache warming strategy?
Any sort of caching strategy will be an exercise in trade-offs. And the precise trade-offs you need to make will be dependent upon complex domain logic that you can't predict until you try it out.
What this means is that whatever you implement should be based on data and should be flexible enough to change over time as the business changes. In particular the answer to these questions:
Is it okay to sacrifice one request to warm cache for bulk of the data? Or is it better to have a cache warming strategy?
depend on how the data will be queried by your users and how long a cache miss will take. If queries tend to be clustered around certain skus, or certain dates in a predictable manner, then you should use that information to help guide cache hits and misses.
There is no way I, or anyone else, can give you a correct answer without doing proper experimentation, but we can give you some guidelines.
Here are some best practices that I would recommend when using redis for caching:
If the bottleneck is sending data from redis to the api, then consider using lua scripts to do the simple processing before any data leaves redis. But, be careful that you don't make the scripts too complex since a long-running lua script can block all other parts of redis
It looks like you are using simple get/set keys to store your data. Consider using something more complex:
a. use sorted sets (zsets) if you want to have better access to data by date (use the date as the score).
b. use hash sets to get more fine-grained access to skus
Based on your question, it looks like you will have about 1.6M keys. This is not a huge amount, but you need to make sure that redis has enough memory to store everything in ram without swapping anything to disk. This is something that we had to learn the hard way. If you are running your redis instance on linux, you must set the system's swappiness to 0, to ensure swap is never used.
But, most importantly, you need to experiment with everything until you find a good solution.

Serving millions of routes with good performance

I'm doing some research for a new project, for which the constraints and specifications have yet to be set. One thing that is wanted is a large number of paths, directly under the root domain. This could ramp up to millions of paths. The paths don't have a common structure or unique parts, so I have to look for exact matches.
Now I know it's more efficient to break up those paths, which would also help in the path lookup. However I'm researching the possibility here, so bear with me.
I'm evaluating methods to accomplish this, while maintaining excellent performance. I thought of the following methods:
Storing the paths in an SQL database and doing a lookup on every request. This seems like the worst option and will definitely not be used.
Storing the paths in a key-value store like Redis. This would be a lot better, and perform quite well I think (have to benchmark it though).
Doing string/regex matching - like many frameworks do out of the box - for this amount of possible matches is nuts and thus not really an option. But I could see how doing some sort of algorithm where you compare letter-by-letter, in combination with some smart optimizations, could work.
But maybe there are tools/methods I don't know about that are far more suited for this type of problem. I could use any tips on how to accomplish this though.
Oh and in case anyone is wondering, no this isn't homework.
UPDATE
I've tested the Redis approach. Based on two sets of keywords, I got 150 million paths. I've added each of them using the set command, with the value being a serialized string of id's I can use to identify the actual keywords in the request. (SET 'keyword1-keyword2' '<serialized_string>')
A quick test in a local VM with a data set of one million records returned promising results: benchmarking 1000 requests took 2ms on average. And this was on my laptop, which runs tons of other stuff.
Next I did a complete test on a VPS with 4 cores and 8GB of RAM, with the complete set of 150 million records. This yielded a database of 3.1G in file size, and around 9GB in memory. Since the database could not be loaded in memory entirely, Redis started swapping, which caused terrible results: around 100ms on average.
Obviously this will not work and scale nice. Either each web server needs to have a enormous amount of RAM for this, or we'll have to use a dedicated Redis-routing server. I've read an article from the engineers at Instagram, who came up with a trick to decrease the database size dramatically, but I haven't tried this yet. Either way, this does not seem the right way to do this. Back to the drawing board.
Storing the paths in an SQL database and doing a lookup on every request. This seems like the worst option and will definitely not be used.
You're probably underestimating what a database can do. Can I invite you to reconsider your position there?
For Postgres (or MySQL w/ InnoDB), a million entries is a notch above tiny. Store the whole path in a field, add an index on it, vacuum, analyze. Don't do nutty joins until you've identified the ID of your key object, and you'll be fine in terms of lookup speeds. Say a few ms when running your query from psql.
Your real issue will be the bottleneck related to disk IO if you get material amounts of traffic. The operating motto here is: the less, the better. Besides the basics such as installing APC on your php server, using Passenger if you're using Ruby, etc:
Make sure the server has plenty of RAM to fit that index.
Cache a reference to the object related to each path in memcached.
If you can categorize all routes in a dozen or so regex, they might help by allowing the use of smaller, more targeted indexes that are easier to keep in memory. If not, just stick to storing the (possibly trailing-slashed) entire path and move on.
Worry about misses. If you've a non-canonical URL that redirects to a canonical one, store the redirect in memcached without any expiration date and begone with it.
Did I mention lots of RAM and memcached?
Oh, and don't overrate that ORM you're using, either. Chances are it's taking more time to build your query than your data store is taking to parse, retrieve and return the results.
RAM... Memcached...
To be very honest, Reddis isn't so different from a SQL + memcached option, except when it comes to memory management (as you found out), sharding, replication, and syntax. And familiarity, of course.
Your key decision point (besides excluding iterating over more than a few regex) ought to be how your data is structured. If it's highly structured with critical needs for atomicity, SQL + memcached ought to be your preferred option. If you've custom fields all over and obese EAV tables, then playing with Reddis or CouchDB or another NoSQL store ought to be on your radar.
In either case, it'll help to have lots of RAM to keep those indexes in memory, and a memcached cluster in front of the whole thing will never hurt if you need to scale.
Redis is your best bet I think. SQL would be slow and regular expressions from my experience are always painfully slow in queries.
I would do the following steps to test Redis:
Fire up a Redis instance either with a local VM or in the cloud on something like EC2.
Download a dictionary or two and pump this data into Redis. For example something from here: http://wordlist.sourceforge.net/ Make sure you normalize the data. For example, always lower case the strings and remove white space at the start/end of the string, etc.
I would ignore the hash. I don't see the reason you need to hash the URL? It would be impossible to read later if you wanted to debug things and it doesn't seem to "buy" you anything. I went to http://www.sha1-online.com/, and entered ryan and got ea3cd978650417470535f3a4725b6b5042a6ab59 as the hash. The original text would be much smaller to put in RAM which will help Redis. Obviously for longer paths, the hash would be better, but your examples were very small. =)
Write a tool to read from Redis and see how well it performs.
Profit!
Keep in mind that Redis needs to keep the entire data set in RAM, so plan accordingly.
I would suggest using some kind of key-value store (i.e. a hashing store), possibly along with hashing the key so it is shorter (something like SHA-1 would be OK IMHO).

Memcached vs. Redis? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Closed 2 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
We're using a Ruby web-app with Redis server for caching. Is there a point to test Memcached instead?
What will give us better performance? Any pros or cons between Redis and Memcached?
Points to consider:
Read/write speed.
Memory usage.
Disk I/O dumping.
Scaling.
Summary (TL;DR)
Updated June 3rd, 2017
Redis is more powerful, more popular, and better supported than memcached. Memcached can only do a small fraction of the things Redis can do. Redis is better even where their features overlap.
For anything new, use Redis.
Memcached vs Redis: Direct Comparison
Both tools are powerful, fast, in-memory data stores that are useful as a cache. Both can help speed up your application by caching database results, HTML fragments, or anything else that might be expensive to generate.
Points to Consider
When used for the same thing, here is how they compare using the original question's "Points to Consider":
Read/write speed: Both are extremely fast. Benchmarks vary by workload, versions, and many other factors but generally show redis to be as fast or almost as fast as memcached. I recommend redis, but not because memcached is slow. It's not.
Memory usage: Redis is better.
memcached: You specify the cache size and as you insert items the daemon quickly grows to a little more than this size. There is never really a way to reclaim any of that space, short of restarting memcached. All your keys could be expired, you could flush the database, and it would still use the full chunk of RAM you configured it with.
redis: Setting a max size is up to you. Redis will never use more than it has to and will give you back memory it is no longer using.
I stored 100,000 ~2KB strings (~200MB) of random sentences into both. Memcached RAM usage grew to ~225MB. Redis RAM usage grew to ~228MB. After flushing both, redis dropped to ~29MB and memcached stayed at ~225MB. They are similarly efficient in how they store data, but only one is capable of reclaiming it.
Disk I/O dumping: A clear win for redis since it does this by default and has very configurable persistence. Memcached has no mechanisms for dumping to disk without 3rd party tools.
Scaling: Both give you tons of headroom before you need more than a single instance as a cache. Redis includes tools to help you go beyond that while memcached does not.
memcached
Memcached is a simple volatile cache server. It allows you to store key/value pairs where the value is limited to being a string up to 1MB.
It's good at this, but that's all it does. You can access those values by their key at extremely high speed, often saturating available network or even memory bandwidth.
When you restart memcached your data is gone. This is fine for a cache. You shouldn't store anything important there.
If you need high performance or high availability there are 3rd party tools, products, and services available.
redis
Redis can do the same jobs as memcached can, and can do them better.
Redis can act as a cache as well. It can store key/value pairs too. In redis they can even be up to 512MB.
You can turn off persistence and it will happily lose your data on restart too. If you want your cache to survive restarts it lets you do that as well. In fact, that's the default.
It's super fast too, often limited by network or memory bandwidth.
If one instance of redis/memcached isn't enough performance for your workload, redis is the clear choice. Redis includes cluster support and comes with high availability tools (redis-sentinel) right "in the box". Over the past few years redis has also emerged as the clear leader in 3rd party tooling. Companies like Redis Labs, Amazon, and others offer many useful redis tools and services. The ecosystem around redis is much larger. The number of large scale deployments is now likely greater than for memcached.
The Redis Superset
Redis is more than a cache. It is an in-memory data structure server. Below you will find a quick overview of things Redis can do beyond being a simple key/value cache like memcached. Most of redis' features are things memcached cannot do.
Documentation
Redis is better documented than memcached. While this can be subjective, it seems to be more and more true all the time.
redis.io is a fantastic easily navigated resource. It lets you try redis in the browser and even gives you live interactive examples with each command in the docs.
There are now 2x as many stackoverflow results for redis as memcached. 2x as many Google results. More readily accessible examples in more languages. More active development. More active client development. These measurements might not mean much individually, but in combination they paint a clear picture that support and documentation for redis is greater and much more up-to-date.
Persistence
By default redis persists your data to disk using a mechanism called snapshotting. If you have enough RAM available it's able to write all of your data to disk with almost no performance degradation. It's almost free!
In snapshot mode there is a chance that a sudden crash could result in a small amount of lost data. If you absolutely need to make sure no data is ever lost, don't worry, redis has your back there too with AOF (Append Only File) mode. In this persistence mode data can be synced to disk as it is written. This can reduce maximum write throughput to however fast your disk can write, but should still be quite fast.
There are many configuration options to fine tune persistence if you need, but the defaults are very sensible. These options make it easy to setup redis as a safe, redundant place to store data. It is a real database.
Many Data Types
Memcached is limited to strings, but Redis is a data structure server that can serve up many different data types. It also provides the commands you need to make the most of those data types.
Strings (commands)
Simple text or binary values that can be up to 512MB in size. This is the only data type redis and memcached share, though memcached strings are limited to 1MB.
Redis gives you more tools for leveraging this datatype by offering commands for bitwise operations, bit-level manipulation, floating point increment/decrement support, range queries, and multi-key operations. Memcached doesn't support any of that.
Strings are useful for all sorts of use cases, which is why memcached is fairly useful with this data type alone.
Hashes (commands)
Hashes are sort of like a key value store within a key value store. They map between string fields and string values. Field->value maps using a hash are slightly more space efficient than key->value maps using regular strings.
Hashes are useful as a namespace, or when you want to logically group many keys. With a hash you can grab all the members efficiently, expire all the members together, delete all the members together, etc. Great for any use case where you have several key/value pairs that need to grouped.
One example use of a hash is for storing user profiles between applications. A redis hash stored with the user ID as the key will allow you to store as many bits of data about a user as needed while keeping them stored under a single key. The advantage of using a hash instead of serializing the profile into a string is that you can have different applications read/write different fields within the user profile without having to worry about one app overriding changes made by others (which can happen if you serialize stale data).
Lists (commands)
Redis lists are ordered collections of strings. They are optimized for inserting, reading, or removing values from the top or bottom (aka: left or right) of the list.
Redis provides many commands for leveraging lists, including commands to push/pop items, push/pop between lists, truncate lists, perform range queries, etc.
Lists make great durable, atomic, queues. These work great for job queues, logs, buffers, and many other use cases.
Sets (commands)
Sets are unordered collections of unique values. They are optimized to let you quickly check if a value is in the set, quickly add/remove values, and to measure overlap with other sets.
These are great for things like access control lists, unique visitor trackers, and many other things. Most programming languages have something similar (usually called a Set). This is like that, only distributed.
Redis provides several commands to manage sets. Obvious ones like adding, removing, and checking the set are present. So are less obvious commands like popping/reading a random item and commands for performing unions and intersections with other sets.
Sorted Sets (commands)
Sorted Sets are also collections of unique values. These ones, as the name implies, are ordered. They are ordered by a score, then lexicographically.
This data type is optimized for quick lookups by score. Getting the highest, lowest, or any range of values in between is extremely fast.
If you add users to a sorted set along with their high score, you have yourself a perfect leader-board. As new high scores come in, just add them to the set again with their high score and it will re-order your leader-board. Also great for keeping track of the last time users visited and who is active in your application.
Storing values with the same score causes them to be ordered lexicographically (think alphabetically). This can be useful for things like auto-complete features.
Many of the sorted set commands are similar to commands for sets, sometimes with an additional score parameter. Also included are commands for managing scores and querying by score.
Geo
Redis has several commands for storing, retrieving, and measuring geographic data. This includes radius queries and measuring distances between points.
Technically geographic data in redis is stored within sorted sets, so this isn't a truly separate data type. It is more of an extension on top of sorted sets.
Bitmap and HyperLogLog
Like geo, these aren't completely separate data types. These are commands that allow you to treat string data as if it's either a bitmap or a hyperloglog.
Bitmaps are what the bit-level operators I referenced under Strings are for. This data type was the basic building block for reddit's recent collaborative art project: r/Place.
HyperLogLog allows you to use a constant extremely small amount of space to count almost unlimited unique values with shocking accuracy. Using only ~16KB you could efficiently count the number of unique visitors to your site, even if that number is in the millions.
Transactions and Atomicity
Commands in redis are atomic, meaning you can be sure that as soon as you write a value to redis that value is visible to all clients connected to redis. There is no wait for that value to propagate. Technically memcached is atomic as well, but with redis adding all this functionality beyond memcached it is worth noting and somewhat impressive that all these additional data types and features are also atomic.
While not quite the same as transactions in relational databases, redis also has transactions that use "optimistic locking" (WATCH/MULTI/EXEC).
Pipelining
Redis provides a feature called 'pipelining'. If you have many redis commands you want to execute you can use pipelining to send them to redis all-at-once instead of one-at-a-time.
Normally when you execute a command to either redis or memcached, each command is a separate request/response cycle. With pipelining, redis can buffer several commands and execute them all at once, responding with all of the responses to all of your commands in a single reply.
This can allow you to achieve even greater throughput on bulk importing or other actions that involve lots of commands.
Pub/Sub
Redis has commands dedicated to pub/sub functionality, allowing redis to act as a high speed message broadcaster. This allows a single client to publish messages to many other clients connected to a channel.
Redis does pub/sub as well as almost any tool. Dedicated message brokers like RabbitMQ may have advantages in certain areas, but the fact that the same server can also give you persistent durable queues and other data structures your pub/sub workloads likely need, Redis will often prove to be the best and most simple tool for the job.
Lua Scripting
You can kind of think of lua scripts like redis's own SQL or stored procedures. It's both more and less than that, but the analogy mostly works.
Maybe you have complex calculations you want redis to perform. Maybe you can't afford to have your transactions roll back and need guarantees every step of a complex process will happen atomically. These problems and many more can be solved with lua scripting.
The entire script is executed atomically, so if you can fit your logic into a lua script you can often avoid messing with optimistic locking transactions.
Scaling
As mentioned above, redis includes built in support for clustering and is bundled with its own high availability tool called redis-sentinel.
Conclusion
Without hesitation I would recommend redis over memcached for any new projects, or existing projects that don't already use memcached.
The above may sound like I don't like memcached. On the contrary: it is a powerful, simple, stable, mature, and hardened tool. There are even some use cases where it's a little faster than redis. I love memcached. I just don't think it makes much sense for future development.
Redis does everything memcached does, often better. Any performance advantage for memcached is minor and workload specific. There are also workloads for which redis will be faster, and many more workloads that redis can do which memcached simply can't. The tiny performance differences seem minor in the face of the giant gulf in functionality and the fact that both tools are so fast and efficient they may very well be the last piece of your infrastructure you'll ever have to worry about scaling.
There is only one scenario where memcached makes more sense: where memcached is already in use as a cache. If you are already caching with memcached then keep using it, if it meets your needs. It is likely not worth the effort to move to redis and if you are going to use redis just for caching it may not offer enough benefit to be worth your time. If memcached isn't meeting your needs, then you should probably move to redis. This is true whether you need to scale beyond memcached or you need additional functionality.
Use Redis if
You require selectively deleting/expiring items in the cache. (You need this)
You require the ability to query keys of a particular type. eq. 'blog1:posts:*', 'blog2:categories:xyz:posts:*'. oh yeah! this is very important. Use this to invalidate certain types of cached items selectively. You can also use this to invalidate fragment cache, page cache, only AR objects of a given type, etc.
Persistence (You will need this too, unless you are okay with your cache having to warm up after every restart. Very essential for objects that seldom change)
Use memcached if
Memcached gives you headached!
umm... clustering? meh. if you gonna go that far, use Varnish and Redis for caching fragments and AR Objects.
From my experience I've had much better stability with Redis than Memcached
Memcached is multithreaded and fast.
Redis has lots of features and is very fast, but completely limited to one core as it is based on an event loop.
We use both. Memcached is used for caching objects, primarily reducing read load on the databases. Redis is used for things like sorted sets which are handy for rolling up time-series data.
This is too long to be posted as a comment to already accepted answer, so I put it as a separate answer
One thing also to consider is whether you expect to have a hard upper memory limit on your cache instance.
Since redis is an nosql database with tons of features and caching is only one option it can be used for, it allocates memory as it needs it — the more objects you put in it, the more memory it uses. The maxmemory option does not strictly enforces upper memory limit usage. As you work with cache, keys are evicted and expired; chances are your keys are not all the same size, so internal memory fragmentation occurs.
By default redis uses jemalloc memory allocator, which tries its best to be both memory-compact and fast, but it is a general purpose memory allocator and it cannot keep up with lots of allocations and object purging occuring at a high rate. Because of this, on some load patterns redis process can apparently leak memory because of internal fragmentation. For example, if you have a server with 7 Gb RAM and you want to use redis as non-persistent LRU cache, you may find that redis process with maxmemory set to 5Gb over time would use more and more memory, eventually hitting total RAM limit until out-of-memory killer interferes.
memcached is a better fit to scenario described above, as it manages its memory in a completely different way. memcached allocates one big chunk of memory — everything it will ever need — and then manages this memory by itself, using its own implemented slab allocator. Moreover, memcached tries hard to keep internal fragmentation low, as it actually uses per-slab LRU algorithm, when LRU evictions are done with object size considered.
With that said, memcached still has a strong position in environments, where memory usage has to be enforced and/or be predictable. We've tried to use latest stable redis (2.8.19) as a drop-in non-persistent LRU-based memcached replacement in workload of 10-15k op/s, and it leaked memory A LOT; the same workload was crashing Amazon's ElastiCache redis instances in a day or so because of the same reasons.
Memcached is good at being a simple key/value store and is good at doing key => STRING. This makes it really good for session storage.
Redis is good at doing key => SOME_OBJECT.
It really depends on what you are going to be putting in there. My understanding is that in terms of performance they are pretty even.
Also good luck finding any objective benchmarks, if you do find some kindly send them my way.
If you don't mind a crass writing style, Redis vs Memcached on the Systoilet blog is worth a read from a usability standpoint, but be sure to read the back & forth in the comments before drawing any conclusions on performance; there are some methodological problems (single-threaded busy-loop tests), and Redis has made some improvements since the article was written as well.
And no benchmark link is complete without confusing things a bit, so also check out some conflicting benchmarks at Dormondo's LiveJournal and the Antirez Weblog.
Edit -- as Antirez points out, the Systoilet analysis is rather ill-conceived. Even beyond the single-threading shortfall, much of the performance disparity in those benchmarks can be attributed to the client libraries rather than server throughput. The benchmarks at the Antirez Weblog do indeed present a much more apples-to-apples (with the same mouth) comparison.
I got the opportunity to use both memcached and redis together in the caching proxy that i have worked on , let me share you where exactly i have used what and reason behind same....
Redis >
1) Used for indexing the cache content , over the cluster . I have more than billion keys in spread over redis clusters , redis response times is quite less and stable .
2) Basically , its a key/value store , so where ever in you application you have something similar, one can use redis with bothering much.
3) Redis persistency, failover and backup (AOF ) will make your job easier .
Memcache >
1) yes , an optimized memory that can be used as cache . I used it for storing cache content getting accessed very frequently (with 50 hits/second)with size less than 1 MB .
2) I allocated only 2GB out of 16 GB for memcached that too when my single content size was >1MB .
3) As the content grows near the limits , occasionally i have observed higher response times in the stats(not the case with redis) .
If you ask for overall experience Redis is much green as it is easy to configure, much flexible with stable robust features.
Further , there is a benchmarking result available at this link , below are few higlight from same,
Hope this helps!!
Test. Run some simple benchmarks. For a long while I considered myself an old school rhino since I used mostly memcached and considered Redis the new kid.
With my current company Redis was used as the main cache. When I dug into some performance stats and simply started testing, Redis was, in terms of performance, comparable or minimally slower than MySQL.
Memcached, though simplistic, blew Redis out of water totally. It scaled much better:
for bigger values (required change in slab size, but worked)
for multiple concurrent requests
Also, memcached eviction policy is in my view, much better implemented, resulting in overall more stable average response time while handling more data than the cache can handle.
Some benchmarking revealed that Redis, in our case, performs very poorly. This I believe has to do with many variables:
type of hardware you run Redis on
types of data you store
amount of gets and sets
how concurrent your app is
do you need data structure storage
Personally, I don't share the view Redis authors have on concurrency and multithreading.
Another bonus is that it can be very clear how memcache is going to behave in a caching scenario, while redis is generally used as a persistent datastore, though it can be configured to behave just like memcached aka evicting Least Recently Used items when it reaches max capacity.
Some apps I've worked on use both just to make it clear how we intend the data to behave - stuff in memcache, we write code to handle the cases where it isn't there - stuff in redis, we rely on it being there.
Other than that Redis is generally regarded as superior for most use cases being more feature-rich and thus flexible.
It would not be wrong, if we say that redis is combination of (cache + data structure) while memcached is just a cache.
A very simple test to set and get 100k unique keys and values against redis-2.2.2 and memcached. Both are running on linux VM(CentOS) and my client code(pasted below) runs on windows desktop.
Redis
Time taken to store 100000 values is = 18954ms
Time taken to load 100000 values is = 18328ms
Memcached
Time taken to store 100000 values is = 797ms
Time taken to retrieve 100000 values is = 38984ms
Jedis jed = new Jedis("localhost", 6379);
int count = 100000;
long startTime = System.currentTimeMillis();
for (int i=0; i<count; i++) {
jed.set("u112-"+i, "v51"+i);
}
long endTime = System.currentTimeMillis();
System.out.println("Time taken to store "+ count + " values is ="+(endTime-startTime)+"ms");
startTime = System.currentTimeMillis();
for (int i=0; i<count; i++) {
client.get("u112-"+i);
}
endTime = System.currentTimeMillis();
System.out.println("Time taken to retrieve "+ count + " values is ="+(endTime-startTime)+"ms");
One major difference that hasn't been pointed out here is that Memcache has an upper memory limit at all times, while Redis does not by default (but can be configured to). If you would always like to store a key/value for certain amount of time (and never evict it because of low memory) you want to go with Redis. Of course, you also risk the issue of running out of memory...
Memcached will be faster if you are interested in performance, just even because Redis involves networking (TCP calls). Also internally Memcache is faster.
Redis has more features as it was mentioned by other answers.
The biggest remaining reason is specialization.
Redis can do a lot of different things and one side effect of that is developers may start using a lot of those different feature sets on the same instance. If you're using the LRU feature of Redis for a cache along side hard data storage that is NOT LRU it's entirely possible to run out of memory.
If you're going to setup a dedicated Redis instance to be used ONLY as an LRU instance to avoid that particular scenario then there's not really any compelling reason to use Redis over Memcached.
If you need a reliable "never goes down" LRU cache...Memcached will fit the bill since it's impossible for it to run out of memory by design and the specialize functionality prevents developers from trying to make it so something that could endanger that. Simple separation of concerns.
We thought of Redis as a load-takeoff for our project at work. We thought that by using a module in nginx called HttpRedis2Module or something similar we would have awesome speed but when testing with AB-test we're proven wrong.
Maybe the module was bad or our layout but it was a very simple task and it was even faster to take data with php and then stuff it into MongoDB. We're using APC as caching-system and with that php and MongoDB. It was much much faster then nginx Redis module.
My tip is to test it yourself, doing it will show you the results for your environment. We decided that using Redis was unnecessary in our project as it would not make any sense.
Redis is better.
The Pros of Redis are ,
It has a lot of data storage options such as string , sets , sorted sets , hashes , bitmaps
Disk Persistence of records
Stored Procedure (LUA scripting) support
Can act as a Message Broker using PUB/SUB
Whereas Memcache is an in-memory key value cache type system.
No support for various data type storages like lists , sets as in
redis.
The major con is Memcache has no disk persistence .
Here is the really great article/differences provided by Amazon
Redis is a clear winner comparing with memcached.
Only one plus point for Memcached
It is multithreaded and fast. Redis has lots of great features and is very fast, but limited to one core.
Great points about Redis, which are not supported in Memcached
Snapshots - User can take a snapshot of Redis cache and persist on
secondary storage any point of time.
Inbuilt support for many data structures like Set, Map, SortedSet,
List, BitMaps etc.
Support for Lua scripting in redis

What's the best way to cache binary data?

I pre-generate 20+ million gzipped html pages, store them on disk, and serve them with a web server. Now I need this data to be accessible by multiple web servers. Rsync-ing the files takes too long. NFS seems like it may take too long.
I considered using a key/value store like Redis, but Redis only stores strings as values, and I suspect it will choke on gzipped files.
My current thinking is to use a simple MySQL/Postgres table with a string key and a binary value. Before I implement this solution, I wanted to see if anyone else had experience in this area and could offer advice.
I've head good about Redis, that's one.
I've also heard extremely positive things about memcached. It is suitable for binary data as well.
Take Facebook for example: These guys use memcached, also for the images!
As you know, images are in binary.
So, get memcached, get a machine to utilize it, a binder for PHP or whatever you use for your sites, and off you go! Good luck!
First off, why cache the gzips? Network latency and transmission time is orders of magnitude higher than the CPU time spent compressing the file so doing it on the fly maybe the simplest solution.
However,if you definitely have a need then I'm not sure a central database is going to be any quicker than a file share (of course you should be measuring not guessing these things!). A simple approach could be to host the original files on an NFS share and let each web server gzip and cache them locally on demand. memcached (as Poni suggests) is also a good alternative, but adds a layer of complexity.

Resources