Let's say I have a graph like this
I want to find all the edges from 1 to 3 i.e. 1 2... 2 4... 4 3. I can write the code for 1 to 5 quite easily but when the next node in descending order then my code doesn't work. Please help me with that.
Here is my code:-
given if there is edge between i and j then:-
arr[i][j]=0
where s is total number of nodes and i have to find edges between a and b
for(int i=a;i!=b;)
{
for(int j=1;j<=s;j++)
{
if(arr[i][j]==0)
{
//cout<<i<<" "<<j<<endl;
i=j;
}
}
}
This can be solved using Breadth first search algorithm we can keep track of the parent of the current node while performing a BFS, and then can construct the path from that if the path exists, i have written a c++ solution below
#include<iostream>
#include<queue>
using namespace std;
int n, arr[100][100], par[100], vis[100], ans[100];
void bfs(int start, int end){
queue<int> Q;
Q.push(start);
par[start] = -1;vis[start] = 1;
bool found = false;
while(Q.size() > 0){
int v = Q.front();
Q.pop();
if(v == end){
found = true;
break;
}
for(int i = 1;i <= n;i++){
if(arr[v][i] == 0 || vis[i] == 1) continue;
Q.push(i);vis[i] = 1;
par[i] = v;
}
}
if(found == false){
cout << "No Path Found" << endl;return;
}
int curr = end, len = 0;
while(curr != -1){
ans[len++] = curr;
curr = par[curr];
}
for(int i = len-1;i >= 1;i--) cout << ans[i] << " " << ans[i-1] << endl;
}
int main(){
n = 5;
arr[1][2] = 1;arr[2][1] = 1;
arr[2][4] = 1;arr[4][2] = 1;
arr[4][5] = 1;arr[5][4] = 1;
arr[3][4] = 1;arr[4][3] = 1;
bfs(1, 3);
return 0;
}
Link to solution on Ideone : http://ideone.com/X8QnNu
Related
I am writing Djikstra's algorithm in C++, and am having trouble getting the code to print anything other than the path from A->A. I need to get it to find the path from A->X where X is any one of the nodes A-I.
Expected Output
Actual Output
#include <climits>
#include <fstream>
#include <iostream>
using namespace std;
const int V = 9;
// Function to print shortest path from source to j
// using parent array
void printPath(int parent[], int j) {
char str = j;
// Base Case : If j is source
if (parent[j] == -1) {
cout << str << " ";
return;
}
printPath(parent, parent[j]);
// printf("%d ", j);
cout << str << " ";
}
int miniDist(int distance[], bool Tset[]) // finding minimum distance
{
int minimum = INT_MAX, ind;
for (int k = 0; k < V; k++) {
if (Tset[k] == false && distance[k] <= minimum) {
minimum = distance[k];
ind = k;
}
}
return ind;
}
void DijkstraAlgo(int graph[V][V], char sourceNode,
char endNode) // adjacency matrix
{
int distance[V]; // array to calculate the minimum distance for each node
bool Tset[V]; // boolean array to mark visited and unvisited for each node
int parent[V]; // Parent array to store shortest path tree
// Value of parent[v] for a vertex v stores parent vertex of v
// in shortest path tree.
for (int k = 0; k < V; k++) {
distance[k] = INT_MAX;
Tset[k] = false;
}
parent[sourceNode] = -1; // Parent of root (or source vertex) is -1.
distance[sourceNode] = 0; // Source vertex distance is set 0
for (int k = 0; k < V; k++) {
int end = miniDist(distance, Tset);
Tset[end] = true;
for (int k = 0; k < V; k++) {
// updating the distance of neighbouring vertex
if (!Tset[k] && graph[end][k] && distance[end] != INT_MAX &&
distance[end] + graph[end][k] < distance[k]) {
distance[k] = distance[end] + graph[end][k];
parent[k] = end;
}
}
}
cout << "Vertex\t\tDistance from source vertex\t\t Path" << endl;
int k = sourceNode;
char str = k;
// cout<<str<<"\t\t\t"<<distance[k]<<endl;
cout << str << "\t\t\t" << distance[k] << "\t\t\t\t\t\t\t\t";
printPath(parent, k);
cout << endl;
}
int main() {
char choice1, choice2;
ifstream inFile;
inFile.open("graph.txt");
int graph[V][V];
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++)
inFile >> graph[i][j];
}
cout << "Nodes: "
<< "A, B, C, D, E, F, G, H, I" << endl;
cout << "Enter starting node: ";
cin >> choice1;
cout << "Enter ending node: ";
cin >> choice2;
cout << endl;
DijkstraAlgo(graph, choice1, choice2);
inFile.close();
return 0;
}
So, I have to be able to pass the endNode parameter to something somehow, correct?
The main issue lies here:
int miniDist(int distance[], bool Tset[])
In your minimum distance calculation, you don't exclude the source vertex. All other vertices have INT_MAX distance and the source has 0 distance, so it gets picked. Try going through the algorithm once again to fix your implementation.
There is a node that can only get one line, I use both kruskal and prim, but the judger said TLE(Time Limit Exceed).
Then I will describe the question. There are many computers, we need to connect all of them, we give the cost of connection between different computers, also we give the special number of computer which can be only connected by one line. Finally, we guarantee there is a answer and there is no Self-Loop, but there may have multiple edge which have different weight between same node.
Here is my kruskal code, it's TLE.
#include <iostream>
#include <algorithm>
using namespace std;
typedef struct edge{
int start;
int end;
int weight;
}Edge;
int special = 0;
int edgenum;
Edge _edge[600005];
int i, j, k;
int counter = 0;
bool Cmp(const edge &a, const edge &b){
return a.weight < b.weight;
}
int getEnd(int vends[], int i){
while(vends[i] != 0)
i = vends[i];
return i;
}
void kruskal(){
int p1, p2, m, n, ans = 0;
int vends[10005] = {0};
sort(_edge, _edge+counter, Cmp);
for(i = 0; i < edgenum; ++i){
p1 = _edge[i].start;
p2 = _edge[i].end;
if ((p1 == k || p2 == k) && special)
continue;
m = getEnd(vends, p1);
n = getEnd(vends, p2);
if(m != n){
if (p1 == k || p2 == k)
special = 1;
vends[m] = n;
ans += _edge[i].weight;
}
}
cout << ans << endl;
}
int main(){
int n, m;
cin >> n >> m >> k;
edgenum = m;
while(m--){
int a, b, c;
cin >> a >> b >> c;
_edge[counter].start = a; //Get the Edge
_edge[counter].weight = c;
_edge[counter++].end = b;
// _edge[counter].start = b;
// _edge[counter].weight = c;
// _edge[counter++].end = a;
}
kruskal();
}
Here is my Prim, but also TLE:
#include <iostream>
using namespace std;
typedef char VertexType;
typedef struct node{
int adjvex = 0;
int weight = INT32_MAX;
struct node *next = NULL;
}Node;
typedef struct vnode{
VertexType data;
Node *firstnode = NULL;
}Vnode;
Vnode node[10005];
int VNUM;
int n, m, k;
int lowcost[10005] = {0};
int addvnew[10005]; //未加入最小生成树表示为-1,加入则为0
int adjecent[10005] = {0};
bool is_special = false;
int flag;
void prim(int start){
long long sumweight = 0;
int i, j;
Node *p = node[start].firstnode;
for (i = 1; i <= VNUM; ++i) { //重置
addvnew[i] = -1;
}
while (p->next != NULL){
if (lowcost[p->adjvex] == 0 || p->weight < lowcost[p->adjvex])
lowcost[p->adjvex] = p->weight;
p = p->next;
}
if (lowcost[p->adjvex] == 0 || p->weight < lowcost[p->adjvex])
lowcost[p->adjvex] = p->weight;
addvnew[start] = 0;
// adjecent[start] = start;
if (start == k) {
is_special = true;
flag = 1;
}
for (i = 1; i < VNUM; ++i) {
int min = INT32_MAX;
int v=-1;
for (j = 1; j <= VNUM; ++j) { //Find the min
if (addvnew[j] == -1 && lowcost[j] < min && lowcost[j] != 0){
min = lowcost[j];
v = j;
}
}
if (v != -1){ //if min is found
if (flag == 1){
for (int l = 0; l < 10005; ++l) {
lowcost[l] = 0;
}
flag = 0;
}
addvnew[v] = 0;
sumweight += min;
p = node[v].firstnode;
while(p->next != NULL){
if (is_special && p->adjvex == k){ //If find the special node
p = p->next;
continue;
}
if(addvnew[p->adjvex] == -1 && (lowcost[p->adjvex] == 0 || p->weight < lowcost[p->adjvex])){ //如果该点未连接
lowcost[p->adjvex] = p->weight;
}
p = p->next;
}
if (!(is_special && p->adjvex == k))
if(addvnew[p->adjvex] == -1 && (lowcost[p->adjvex] == 0 || p->weight < lowcost[p->adjvex])){
lowcost[p->adjvex] = p->weight;
}
}
}
cout << sumweight << endl;
}
int main(){
cin >> n >> m >> k;
VNUM = n;
while (m--){
int a, b, c;
cin >> a >> b >> c;
Node *p = (Node*)malloc(sizeof(Node));
p->adjvex = b;
p->weight = c;
p->next = node[a].firstnode;
node[a].firstnode = p;
Node *q = (Node*)malloc(sizeof(Node));
q->adjvex = a;
q->weight = c;
q->next = node[b].firstnode;
node[b].firstnode = q;
}
prim(k);
}
I don't know how to modify the both code, I try my best, thank you
I have an array which is constituted of only 0s and 1s. Task is to find index of a 0, replacing which with a 1 results in the longest possible sequence of ones for the given array.
Solution has to work within O(n) time and O(1) space.
Eg:
Array - 011101101001
Answer - 4 ( that produces 011111101001)
My Approach gives me a result better than O(n2) but times out on long string inputs.
int findIndex(int[] a){
int maxlength = 0; int maxIndex= -1;
int n=a.length;
int i=0;
while(true){
if( a[i] == 0 ){
int leftLenght=0;
int j=i-1;
//finding count of 1s to left of this zero
while(j>=0){
if(a[j]!=1){
break;
}
leftLenght++;
j--;
}
int rightLenght=0;
j=i+1;
// finding count of 1s to right of this zero
while(j<n){
if(a[j]!=1){
break;
}
rightLenght++;
j++;
}
if(maxlength < leftLenght+rightLenght + 1){
maxlength = leftLenght+rightLenght + 1;
maxIndex = i;
}
}
if(i == n-1){
break;
}
i++;
}
return maxIndex;
}
The approach is simple, you just need to maintain two numbers while iterating through the array, the current count of the continuous block of one, and the last continuous block of one, which separated by zero.
Note: this solution assumes that there will be at least one zero in the array, otherwise, it will return -1
int cal(int[]data){
int last = 0;
int cur = 0;
int max = 0;
int start = -1;
int index = -1;
for(int i = 0; i < data.length; i++){
if(data[i] == 0){
if(max < 1 + last + cur){
max = 1 + last + cur;
if(start != -1){
index = start;
}else{
index = i;
}
}
last = cur;
start = i;
cur = 0;
}else{
cur++;
}
}
if(cur != 0 && start != -1){
if(max < 1 + last + cur){
return start;
}
}
return index;
}
O(n) time, O(1) space
Live demo: https://ideone.com/1hjS25
I believe the problem can we solved by just maintaining a variable which stores the last trails of 1's that we saw before reaching a '0'.
int last_trail = 0;
int cur_trail = 0;
int last_seen = -1;
int ans = 0, maxVal = 0;
for(int i = 0; i < a.size(); i++) {
if(a[i] == '0') {
if(cur_trail + last_trail + 1 > maxVal) {
maxVal = cur_trail + last_trail + 1;
ans = last_seen;
}
last_trail = cur_trail;
cur_trail = 0;
last_seen = i;
} else {
cur_trail++;
}
}
if(cur_trail + last_trail + 1 > maxVal && last_seen > -1) {
maxVal = cur_trail + last_trail + 1;
ans = last_seen;
}
This can be solved by a technique that is known as two pointers. Most two-pointers use O(1) space and O(n) time.
Code : https://www.ideone.com/N8bznU
#include <iostream>
#include <string>
using namespace std;
int findOptimal(string &s) {
s += '0'; // add a sentinel 0
int best_zero = -1;
int prev_zero = -1;
int zeros_in_interval = 0;
int start = 0;
int best_answer = -1;
for(int i = 0; i < (int)s.length(); ++i) {
if(s[i] == '1') continue;
else if(s[i] == '0' and zeros_in_interval == 0) {
zeros_in_interval++;
prev_zero = i;
}
else if(s[i] == '0' and zeros_in_interval == 1) {
int curr_answer = i - start; // [start, i) only contains one 0
cout << "tried this : [" << s.substr(start, i - start) << "]\n";
if(curr_answer > best_answer) {
best_answer = curr_answer;
best_zero = prev_zero;
}
start = prev_zero + 1;
prev_zero = i;
}
}
cout << "Answer = " << best_zero << endl;
return best_zero;
}
int main() {
string input = "011101101001";
findOptimal(input);
return 0;
}
This is an implementation in C++. The output looks like this:
tried this : [0111]
tried this : [111011]
tried this : [1101]
tried this : [10]
tried this : [01]
Answer = 4
Here's the link for the problem:
I have used union-find algorithm to solve the problem.
Code:
#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
#define INT 100000000
unordered_map<ll, ll> parent;
unordered_map<ll, ll> depth;
std::vector<ll> cost;
ll find_set(ll x) {
if (x == parent[x])return x;
parent[x] = find_set(parent[x]);
return parent[x];
}
void union_set(ll x, ll y) {
/*
Creating a disjoint set such that the node with smallest cost
being the root using union-rank concept.
*/
ll rep1 = find_set(x), rep2 = find_set(y);
if (depth[rep1] > depth[rep2])parent[rep1] = rep2;
else if (depth[rep2] >= depth[rep1])parent[rep2] = rep1;
}
int main() {
ll n, m;
cin >> n >> m;
ll c[m + 1][3];
for (ll i = 1; i <= m; i++) {
cin >> c[i][1] >> c[i][2]; //Accepting the edges
}
for (ll i = 1; i <= n; i++) {
parent[i] = i;
cin >> depth[i];
if (depth[i] < 0)depth[i] = INT;
/*we assume that each negative cost is replaced by a very
large positive cost.*/
}
for (ll i = 1; i <= m; i++) {
union_set(c[i][1], c[i][2]);
}
set<ll> s;
std::vector<ll> v;
//storing representatives of each connected component
for (auto i = 1; i <= n; i++)s.insert(depth[find_set(i)]);
for (auto it = s.begin(); it != s.end(); it++)v.push_back(*it);
sort(v.begin(), v.end());
if (s.size() == 1) {
//Graph is connected if there is only 1 connected comp
cout << 0 << endl;
return 0;
}
bool flag = false;
ll p = 0;
for (ll i = 1; i < v.size(); i++) {
if (v[i] == INT) {
flag = true;
break;
}
p += (v[0]+v[i]);
}
if (flag)cout << -1 << endl;
else cout << p << endl;
return 0;
}
Logic used in my program:
To find the answer, take the minimum value of all the valid values in a connected component.Now to make the graph connected, Take the minimum value of all the values we got from the above step and make edge from that node to all the remaining nodes.If graph is already connected than answer is 0.if there exists a connected component where all nodes are not valid to be chosen, than answer is not possible (-1).
But this solution is not accepted?What's wrong with it?
I use the following code to find maximal matching in bipartite graph
(I've tried to add a few comments):
#include <iostream>
using namespace std;
// definition of lists elements
//-------------------------------
struct slistEl
{
slistEl * next;
int data;
};
// definition objective type queue
//---------------------------------
class queue
{
private:
slistEl * head;
slistEl * tail;
public:
queue();
~queue();
bool empty(void);
int front(void);
void push(int v);
void pop(void);
};
queue::queue()
{
head = tail = NULL;
}
queue::~queue()
{
while(head) pop();
}
bool queue::empty(void)
{
return !head;
}
int queue::front(void)
{
if(head) return head->data;
else return -10000;
}
void queue::push(int v)
{
slistEl * p = new slistEl;
p->next = NULL;
p->data = v;
if(tail) tail->next = p;
else head = p;
tail = p;
}
void queue::pop(void)
{
if(head)
{
slistEl * p = head;
head = head->next;
if(!head) tail = NULL;
delete p;
}
}
//---------------
// main part
//---------------
queue Q; // queue
int *Color; // colors of vertexes
slistEl **graf; // adjacency array
int **C; // matrix of capacity
int **F; // matrix of nett flow
int *P; // array of prev
int *CFP; // array of residual capacity
int n,m,fmax,cp,v,u,i,j; //
bool esc; //
slistEl *pr, *rr; // pointer for list elements
int main(int argc, char *argv[])
{
// n - number of vertexes
// m - number of edges
cin >> n >> m;
Color = new int [n];
graf = new slistEl * [n];
for(i = 0; i < n; i++)
{
graf[i] = NULL;
Color[i] = 0;
}
C = new int * [n+2];
F = new int * [n+2];
for(i = 0; i <= n + 1; i++)
{
C[i] = new int [n+2];
F[i] = new int [n+2];
for(j = 0; j <= n + 1; j++)
{
C[i][j] = 0;
F[i][j] = 0;
}
}
P = new int [n+2];
CFP = new int [n+2];
// reading edges definition and adding to adjacency list
for(i = 0; i < m; i++)
{
cin >> v >> u;
pr = new slistEl;
pr->data = u;
pr->next = graf[v];
graf[v] = pr;
pr = new slistEl;
pr->data = v;
pr->next = graf[u];
graf[u] = pr;
}
for(i = 0; i < n; i++){
cin>> Color[i];
}
for(i = 0; i < n; i++)
if(Color[i] == -1)
{
for(pr = graf[i]; pr; pr = pr -> next) // neighbours of blue
C[i][pr->data] = 1; // capacity to red
C[n][i] = 1; // capacity to source
}
else C[i][n+1] = 1; // capacity edges to outfall
//** Edmonds-Karp algorithm **
fmax = 0;
while(true)
{
for(i = 0; i <= n + 1; i++) P[i] = -1;
P[n] = -2;
CFP[n] = MAXINT;
while(!Q.empty()) Q.pop();
Q.push(n);
esc = false;
while(!Q.empty())
{
v = Q.front(); Q.pop();
for(u = 0; u <= n + 1; u++)
{
cp = C[v][u] - F[v][u];
if(cp && (P[u] == -1))
{
P[u] = v;
if(CFP[v] > cp) CFP[u] = cp; else CFP[u] = CFP[v];
if(u == n+1)
{
fmax += CFP[n+1];
i = u;
while(i != n)
{
v = P[i];
F[v][i] += CFP[n+1];
F[i][v] -= CFP[n+1];
i = v;
}
esc = true; break;
}
Q.push(u);
}
}
if(esc) break;
}
if(!esc) break;
}
// showing reuslts
if(fmax > 0)
for(v = 0; v < n; v++)
for(u = 0; u < n; u++)
if((C[v][u] == 1) && (F[v][u] == 1))
cout << v << " - " << u << endl;
cout << endl;
// cleaning
delete [] Color;
for(i = 0; i < n; i++)
{
pr = graf[i];
while(pr)
{
rr = pr;
pr = pr->next;
delete rr;
}
}
delete [] graf;
for(i = 0; i <= n + 1; i++)
{
delete [] C[i];
delete [] F[i];
}
delete [] C;
delete [] F;
delete [] P;
delete [] CFP;
return 0;
}
It returns only one maximal matching. For example for data:
6 7
0 3 0 5
1 3 1 4 1 5
2 3 2 5
1 1 1 -1 -1 -1
But there are more maximal matchings.
I don't know, how should I modify it to get all results and I would like to ask somebody for help. Thank you in advance.
That algorithm is only efficient to get you a maximum matching.
If you want all maximal matching you have to consider the case where any matching is a maximal matching. In that case you have N! possibilities.
Since you will need to visit all solutions your complexity will be O(N!) at least. Therefore, forget the code you have, you can just try all possible matchings using a recursive algorithm and keep the set of maximal matching you get.