I have a 4-channel image (.png, .tif) like this one:
I am using OpenCV, and I would like to add padding of type BORDER_REFLECT around the flower. copyMakeBorder is not useful, since it adds padding to the edges of the image.
I can add certain padding if I split the image in bgr + alpha and apply dilate with BORDER_REFLECT option on the bgr image, but that solution spoils all the pixels of the flower.
Is there any way to perform a selective BORDER_REFLECT padding addition on a ROI defined by a binary mask?
EDIT:
The result I expect is something like (sorry I painted it very quickly with GIMP) :
I painted two black lines to delimit the old & new contour of the flower after the padding, but of course those lines should not appear in the final result. The padding region (inside the two black lines) must be composed by mirrored pixels from the flower (I painted it yellow to make it understandable).
A simple python script to resize the image and copy the original over the enlarged one will do the trick.
import cv2
img = cv2.imread('border_reflect.png', cv2.IMREAD_UNCHANGED)
pad = 20
sh = img.shape
sh_pad = (sh[0]+pad, sh[1]+pad)
imgpad = cv2.resize(img, sh_pad)
imgpad[20:20+sh[0], 20:20+sh[1], :][img[:,:,3]==255] = img[img[:,:,3]==255]
cv2.imwrite("padded_image.png", imgpad)
Here is the result
But that doesn't look very 'centered'. So I modified the code to detect and account for the offsets while copying.
import cv2
img = cv2.imread('border_reflect.png', cv2.IMREAD_UNCHANGED)
pad = 20
sh = img.shape
sh_pad = (sh[0]+pad, sh[1]+pad)
imgpad = cv2.resize(img, sh_pad)
def get_roi(img):
cimg = img[:,:,3].copy()
contours,hierarchy = cv2.findContours(cimg,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
#Remove the tiny pixel noises that get detected as contours
contours = [cnt for cnt in contours if cv2.contourArea(cnt) > 10]
x,y,w,h = cv2.boundingRect(cnt)
roi=img[y:y+h,x:x+w]
return roi
roi = get_roi(img)
roi2 = get_roi(imgpad)
sh = roi.shape
sh2 = roi2.shape
o = ((sh2[0]-sh[0])/2, (sh2[1]-sh[1])/2)
roi2[o[0]:o[0]+sh[0], o[1]:o[1]+sh[1], :][roi[:,:,3]==255] = roi[roi[:,:,3]==255]
cv2.imwrite("padded_image.png", imgpad)
Looks much better now
The issue has been already addressed and solved here:
http://answers.opencv.org/question/90229/add-padding-to-object-in-4-channel-image/
Related
I need to put many images together side by side but without changing the height or width of any of them. That is to say, it will just be one image of a constant height but very long width as the image are sitting horizontally.
I've been using Python and the PIL library but what I've tried so far is producing an image that makes all the images smaller to concatenate into one long image.
Image.MAX_IMAGE_PIXELS = 100000000 # For PIL Image error when handling very large images
imgs = [ Image.open(i) for i in list_of_images ]
widths, heights = zip(*(i.size for i in imgs))
total_width = sum(widths)
max_height = max(heights)
new_im = Image.new('RGB', (total_width, max_height))
# Place first image
new_im.paste(imgs[0],(0,0))
# Iteratively append images in list horizontally
hoffset=0
for i in range(1,len(imgs),1):
hoffset=imgs[i-1].size[0]+hoffset # update offset**
new_im.paste(imgs[i],(hoffset,0))
new_im.save('row.jpg')
The result I'm getting now is one image made up of concatenated images in a horizontal row. This is what I want, except the images are being made smaller and smaller in the concatenation process. I want the end result to not make the images smaller and instead produce an image made of the input images with their original size. So the output image will just have to have a very long width.
It seems you have a bug while updating the offsets.
You should replace your iteration block with:
imgs = [Image.open(i) for i in list_of_images]
widths, heights = zip(*(i.size for i in imgs))
new_img = Image.new('RGB', (sum(widths), max(heights)))
h_offset = 0
for i, img in enumerate(imgs):
new_img.paste(img, (h_offset, 0))
h_offset += img.size[0]
I have these two functions in my program:
def depict_ph_increase(x,y,color, imobject):
program_print(color)
draw = PIL.ImageDraw.Draw(imobject)
draw.text((x, y),color,(255,255,255))
imobject.save('tmp-out.gif')
im_temp = PIL.Image.open("tmp-out.gif")#.convert2byte()
im_temp = im_temp.resize((930, 340), PIL.Image.ANTIALIAS)
MAP_temp = ImageTk.PhotoImage(im_temp)
map_display_temp = Label(main, image=MAP_temp)
map_display_temp.image = MAP_temp # keep a reference!
map_display_temp.grid(row=4,column=2, columnspan=3)
def read_temp_pixels(temperature_file, rngup, rngdown):
temp_image_object = PIL.Image.open(temperature_file)
(length, width) = get_image_size(temp_image_object)
(rngxleft, rngxright) = rngup
(rngyup,rngydown) = rngdown
print 'the length and width is'
print length, width
hotspots = 5;
for hotspot in range(0,hotspots):
color = "#ffffff"
while color == "#ffffff" or color == "#000000" or color == "#505050" or color == "#969696":
yc = random.randint(rngxleft, rngxright)
xc = random.randint(rngyup,rngydown)
color = convert_RGB_HEX(get_pixel_color(temp_image_object, xc, yc))
depict_ph_increase(xc,yc,color, temp_image_object)
The bottom one calls the top one. Their job is to read in this image:
It then randomly selects a few pixels, grabs their colors, and writes the hex values of the colors on top. But, when it redisplays the image, it gives me this garbage:
Those white numbers up near the upper right corner are the hex values its drawing. Its somehow reading the values from the corrupted image, despite the fact that I don't collect the values until AFTER I actually call the ImageDraw() method. Can someone explain to me why it is corrupting the image?
Some background--the get_pixel_color() function is used several other times in the program and is highly accurate, its just reading the pixel data from the newly corrupted image somehow. Furthermore, I do similar image reading (but not writing) at other points in my code.
If there is anything I can clarify, or any other part of my code you want to see, please let me know. You can also view the program in its entirety at my github here: https://github.com/jrfarah/coral/blob/master/src/realtime.py It should be commit #29.
Other SO questions I have examined, to no avail: Corrupted image is being saved with PIL
Any help would be greatly appreciated!
I fixed the problem by editing this line:
temp_image_object = PIL.Image.open(temperature_file)
to be
temp_image_object = PIL.Image.open(temperature_file).convert('RGB')
I'm trying to combine the two images based on the information from the mask. I'm using the color information from the background image if the mask is 0 and color information from foreground image if the mask is 1. Because the mask and both
Images are of the same size, I would like to use logical indexing of matrices to achieve this.
My attempt:
mask = imread('mask.png');
foreground = imread('fg.jpg');
background = imread('bg.jpg');
[r,c,~]=size(mask);
A = zeros(size(mask));
for i=1:r
for j=1:c
if mask(i,j) == 0
A(i,j,:) = background(i,j,:);
end
if mask(i,j) > 0
A(i,j,:) = foreground(i,j,:);
end
end
end
imshow(A);
The result looks like a flickering blue image, but I don't want that. Please help.
You can do this a bit more concisely:
f = double(foreground).*double(mask);
b = double(background).*double(~mask);
blend = f+b;
imshow(blend, []);
Using logical indexing you could also do
foreground(logical(mask)) = 0;
background(logical(~mask)) = 0;
blend = foreground+background;
The ISNOT operator '~' inverts your matrix in the second line, so you cut out the area you would like for background.
NOTE: This works for black and white (one channel). For coloured images see rayryeng's solution.
There are two problems with your code. The first problem is that you are trying to assign colour pixels to the output image A, yet this image is only two-dimensional. You want an image with three channels, not two. In addition, the output image type you are specifying is wrong. By default, the output image A is of type double, yet you are copying values into it that aren't double... most likely unsigned 8-bit integer.
As such, cast the image to the same type as the input images. Assuming both input images are the same type, initialize your A so that:
A = zeros(size(foreground), class(foreground));
This correctly makes a colour image with the same type as any of the inputs, assuming that they're both the same type.
Now, your for loop is fine, but it's better if you do this in one shot with logical indexing. If you want to use logical indexing, create a new image that's initially blank like what you've done, but then make sure your mask has three channels to match the number of channels the other images have. After, you simply need to index into each image and set the right locations accordingly:
mask = imread('mask.png');
foreground = imread('fg.jpg');
background = imread('bg.jpg');
[r,c,d]=size(mask); %// Change
%// If your mask isn't three channels, make it so
%// Change
if d ~= 3
mask = cat(3, mask, mask, mask);
end
A = zeros(size(foreground), class(foreground)); %// Change
A(mask) = foreground(mask); %// Assign pixels to foreground
A(~mask) = background(~mask); %// Assign pixels to background
imshow(A);
Below is the current working code in python using PIL for highlighting the difference between the two images. But rest of the images is blacken.
Currently i want to show the background as well along with the highlighted image.
Is there anyway i can keep the show the background lighter and just highlight the differences.
from PIL import Image, ImageChops
point_table = ([0] + ([255] * 255))
def black_or_b(a, b):
diff = ImageChops.difference(a, b)
diff = diff.convert('L')
# diff = diff.point(point_table)
h,w=diff.size
new = diff.convert('RGB')
new.paste(b, mask=diff)
return new
a = Image.open('i1.png')
b = Image.open('i2.png')
c = black_or_b(a, b)
c.save('diff.png')
!https://drive.google.com/file/d/0BylgVQ7RN4ZhTUtUU1hmc1FUVlE/view?usp=sharing
PIL does have some handy image manipulation methods,
but also a lot of shortcomings when one wants
to start doing serious image processing -
Most Python lterature will recomend you to switch
to use NumPy over your pixel data, wich will give
you full control -
Other imaging libraries such as leptonica, gegl and vips
all have Python bindings and a range of nice function
for image composition/segmentation.
In this case, the thing is to imagine how one would
get to the desired output in an image manipulation program:
You'd have a black (or other color) shade to place over
the original image, and over this, paste the second image,
but using a threshold (i.e. a pixel either is equal or
is different - all intermediate values should be rounded
to "different) of the differences as a mask to the second image.
I modified your function to create such a composition -
from PIL import Image, ImageChops, ImageDraw
point_table = ([0] + ([255] * 255))
def new_gray(size, color):
img = Image.new('L',size)
dr = ImageDraw.Draw(img)
dr.rectangle((0,0) + size, color)
return img
def black_or_b(a, b, opacity=0.85):
diff = ImageChops.difference(a, b)
diff = diff.convert('L')
# Hack: there is no threshold in PILL,
# so we add the difference with itself to do
# a poor man's thresholding of the mask:
#(the values for equal pixels- 0 - don't add up)
thresholded_diff = diff
for repeat in range(3):
thresholded_diff = ImageChops.add(thresholded_diff, thresholded_diff)
h,w = size = diff.size
mask = new_gray(size, int(255 * (opacity)))
shade = new_gray(size, 0)
new = a.copy()
new.paste(shade, mask=mask)
# To have the original image show partially
# on the final result, simply put "diff" instead of thresholded_diff bellow
new.paste(b, mask=thresholded_diff)
return new
a = Image.open('a.png')
b = Image.open('b.png')
c = black_or_b(a, b)
c.save('c.png')
Here's a solution using libvips:
import sys
from gi.repository import Vips
a = Vips.Image.new_from_file(sys.argv[1], access = Vips.Access.SEQUENTIAL)
b = Vips.Image.new_from_file(sys.argv[2], access = Vips.Access.SEQUENTIAL)
# a != b makes an N-band image with 0/255 for false/true ... we have to OR the
# bands together to get a 1-band mask image which is true for pixels which
# differ in any band
mask = (a != b).bandbool("or")
# now pick pixels from a or b with the mask ... dim false pixels down
diff = mask.ifthenelse(a, b * 0.2)
diff.write_to_file(sys.argv[3])
With PNG images, most CPU time is spent in PNG read and write, so vips is only a bit faster than the PIL solution.
libvips does use a lot less memory, especially for large images. libvips is a streaming library: it can load, process and save the result all at the same time, it does not need to have the whole image loaded into memory before it can start work.
For a 10,000 x 10,000 RGB tif, libvips is about twice as fast and needs about 1/10th the memory.
If you're not wedded to the idea of using Python, there are a few really simple solutions using ImageMagick:
“Diff” an image using ImageMagick
I am writing a function that generates a movie mimicking a particle in a fluid. The movie is coloured and I would like to generate a grayscaled movie for the start. Right now I am using avifile instead of videowriter. Any help on changing this code to get grayscale movie? Thanks in advance.
close all;
clear variables;
colormap('gray');
vidObj=avifile('movie.avi');
for i=1:N
[nx,ny]=coordinates(Lx,Ly,Nx,Ny,[x(i),-y(i)]);
[xf,yf]=ndgrid(nx,ny);
zf=zeros(size(xf))+z(i);
% generate a frame here
[E,H]=nfmie(an,bn,xf,yf,zf,rad,ns,nm,lambda,tf_flag,cc_flag);
Ecc=sqrt(real(E(:,:,1)).^2+real(E(:,:,2)).^2+real(E(:,:,3)).^2+imag(E(:,:,1)).^2+imag(E(:,:,2)).^2+imag(E(:,:,3)).^2);
clf
imagesc(nx/rad,ny/rad,Ecc);
writetif(Ecc,i);
if i==1
cl=caxis;
else
caxis(cl)
end
axis image;
axis off;
frame=getframe(gca);
cdata_size = size(frame.cdata);
data = uint8(zeros(ceil(cdata_size(1)/4)*4,ceil(cdata_size(2)/4)*4,3));
data(1:cdata_size(1),1:cdata_size(2),1:cdata_size(3)) = [frame.cdata];
frame.cdata = data;
vidObj = addframe(vidObj,frame);
end
vidObj = close(vidObj);
For your frame data, use rgb2gray to convert a colour frame into its grayscale counterpart. As such, change this line:
data(1:cdata_size(1),1:cdata_size(2),1:cdata_size(3)) = [frame.cdata];
To these two lines:
frameGray = rgb2gray(frame.cdata);
data(1:cdata_size(1),1:cdata_size(2),1:cdata_size(3)) = ...
cat(3,frameGray,frameGray,frameGray);
The first line of the new code will convert your colour frame into a single channel grayscale image. In colour, grayscale images have all of the same values for all of the channels, which is why for the second line, cat(3,frameGray,frameGray,frameGray); is being called. This stacks three copies of the grayscale image on top of each other as a 3D matrix and you can then write this frame to your file.
You need to do this stacking because when writing a frame to file using VideoWriter, the frame must be colour (a.k.a. a 3D matrix). As such, the only workaround you have if you want to write a grayscale frame to the file is to replicate the grayscale image into each of the red, green and blue channels to create its colour equivalent.
BTW, cdata_size(3) will always be 3, as getframe's cdata structure always returns a 3D matrix.
Good luck!