I am reading about memory barriers and what I can summarize is that they prevent instruction re-ordering done by compilers.
So in User space memory lets say I have
b = 0;
main(){
a = 10;
b = 20;
c = add(a,b);
}
Can the compiler reorder this code so that b = 20 assignment happens after c = add() is called.
Why we do not use barriers in this case ? Am I missing some fundamental here.
Does Virtual memory is exempted from any re ordering ?
Extending the Question further:
In Network driver:
1742 /*
1743 * Writing to TxStatus triggers a DMA transfer of the data
1744 * copied to tp->tx_buf[entry] above. Use a memory barrier
1745 * to make sure that the device sees the updated data.
1746 */
1747 wmb();
1748 RTL_W32_F (TxStatus0 + (entry * sizeof (u32)),
1749 tp->tx_flag | max(len, (unsigned int)ETH_ZLEN));
1750
When he says devices see the updated data... How to relate this with the multi threaded theory for usage of barriers.
Short answer
Memory barriers are used less frequently in user mode code than kernel mode code because user mode code tends to use higher level abstractions (for example pthread synchronization operations).
Additional details
There are two things to consider when analyzing the possible ordering of operations:
What order the thread that is executing the code will see the operations in
What order other threads will see the operations in
In your example the compiler cannot reorder b=20 to occur after c=add(a,b) because the c=add(a,b) operation uses the results of b=20. However, it may be possible for the compiler to reorder these operations so that other threads see the memory location associated with c change before the memory location associated with b changes.
Whether this would actually happen or not depends on the memory consistency model that is implemented by the hardware.
As for when the compiler might do reordering you could imagine adding another variable as follows:
b = 0;
main(){
a = 10;
b = 20;
d = 30;
c = add(a,b);
}
In this case the compiler would be free to move the d=30 assignment to occur after c=add(a,b).
However, this entire example is too simplistic. The program doesn't do anything and the compiler can eliminate all the operations and does not need to write anything to memory.
Addendum: Memory reordering example
In a multiprocessor environment multiple threads can see memory operations occur in different orders. The Intel Software Developer's Manual has some examples in Volume 3 section 8.2.3. I've copied a screenshot below that shows an example where loads and stores can be reordered.
There is also a good blog post that provides some more detail about this example.
The thread running the code will always act as if the effects of the source lines of its own code happened in program order. This is as if rule is what enables most compiler optimizations.
Within a single thread, out-of-order CPUs track dependencies to give a thread the illusion that all its instructions executed in program order. The globally-visible (to threads on other cores) effects may be seen out-of-order by other cores, though.
Memory barriers (as part of locking, or on their own) are only needed in code that interacts with other threads through shared memory.
Compilers can similarly do any reordering / hoisting they want, as long as the results are the same. The C++ memory model is very weak, so compile-time reordering is possible even when targeting an x86 CPU. (But of course not reordering that produces different results within the local thread.) C11 <stdatomic.h> and the equivalent C++11 std::atomic are the best way to tell the compiler about any ordering requirements you have for the global visibility of operations. On x86, this usually just results in putting store instructions in source order, but the default memory_order_seq_cst needs an MFENCE on each store to prevent StoreLoad reordering for full sequential consistency.
In kernel code, memory barriers are also common to make sure that stores to memory-mapped I/O registers happen in a required order. The reasoning is the same: to order the globally-visible effects on memory of a sequence of stores and loads. The difference is that the observer is an I/O device, not a thread on another CPU. The fact that cores interact with each other through a cache coherency protocol is irrelevant.
The compiler cannot reorder (nor can the runtime or the cpu) so that b=20 is after the c=add()since that would change the semantics of the method and that is not permissible.
I would say that for the compiler (or runtime or cpu) to act as you describe would make the behaviour random, which would be a bad thing.
This restriction on reordering applies only within the thread executing the code. As #GabrielSouthern points out, the ordering of the stores becoming globally visible is not guaranteed, if a, b, and c are all global variables.
Related
I am porting a lock free queue from c++11 to go and i came across things such as
auto currentRead = writeIndex.load(std::memory_order_relaxed);
and in some cases std::memory_order_release and std::memory_order_aqcuire
also the equivelent for the above in c11 is something like
unsigned long currentRead = atomic_load_explicit(&q->writeIndex,memory_order_relaxed);
the meaning of those is described here
is there an equivalent to such thing in go or do i just use something like
var currentRead uint64 = atomic.LoadUint64(&q.writeIndex)
after porting i benchmarked and just using LoadUint64 it seems to work as expected but orders of magnitude slower and i wonder how much effect dose those specialized ops have on performance.
further info from the link i attached
memory_order_relaxed:Relaxed operation: there are no synchronization
or ordering constraints, only atomicity is required of this operation.
memory_order_consume:A load operation with this memory order performs
a consume operation on the affected memory location: no reads in the
current thread dependent on the value currently loaded can be
reordered before this load. This ensures that writes to data-dependent
variables in other threads that release the same atomic variable are
visible in the current thread. On most platforms, this affects
compiler optimizations only.
memory_order_acquire:A load operation with this memory order performs the acquire operation on the affected memory location: no
memory accesses in the current thread can be reordered before this
load. This ensures that all writes in other threads that release the
same atomic variable are visible in the current thread.
memory_order_release:A store operation with this memory order performs the release operation: no memory accesses in the current
thread can be reordered after this store. This ensures that all writes
in the current thread are visible in other threads that acquire or the
same atomic variable and writes that carry a dependency into the
atomic variable become visible in other threads that consume the same
atomic.
You need to read The Go Memory Model
You'll discover that Go has nothing like the control that you have in C++ - there isn't a direct translation of the C++ features in your post. This is a deliberate design decision by the Go authors - the Go motto is Do not communicate by sharing memory; instead, share memory by communicating.
Assuming that the standard go channel isn't good enough for what you want to do, you'll have 2 choices for each memory access, using the facilities in sync/atomic or not, and whether you need to use them or not will depend on a careful reading of the Go Memory Model and analysis of your code which only you can do.
It's my understanding of atomicity that it's used to make sure a value will be read/written in whole rather than in parts. For example, a 64-bit value that is really two 32-bit DWORDs (assume x86 here) must be atomic when shared between threads so that both DWORDs are read/written at the same time. That way one thread can't read half variable that's not updated. How do you guarantee atomicity?
Furthermore it's my understanding that volatility does not guarantee thread safety at all. Is that true?
I've seen it implied many places that simply being atomic/volatile is thread-safe. I don't see how that is. Won't I need a memory barrier as well to ensure that any values, atomic or otherwise, are read/written before they can actually be guaranteed to be read/written in the other thread?
So for example let's say I create a thread suspended, do some calculations to change some values to a struct available to the thread and then resume, for example:
HANDLE hThread = CreateThread(NULL, 0, thread_entry, (void *)&data, CREATE_SUSPENDED, NULL);
data->val64 = SomeCalculation();
ResumeThread(hThread);
I suppose this would depend on any memory barriers in ResumeThread? Should I do an interlocked exchange for val64? What if the thread were running, how does that change things?
I'm sure I'm asking a lot here but basically what I'm trying to figure out is what I asked in the title: a good explanation for atomicity, volatility and thread safety in Windows. Thanks
it's used to make sure a value will be read/written in whole
That's just a small part of atomicity. At its core it means "uninterruptible", an instruction on a processor whose side-effects cannot be interleaved with another instruction. By design, a memory update is atomic when it can be executed with a single memory-bus cycle. Which requires the address of the memory location to be aligned so that a single cycle can update it. An unaligned access requires extra work, part of the bytes written by one cycle and part by another. Now it is not uninterruptible anymore.
Getting aligned updates is pretty easy, it is a guarantee provided by the compiler. Or, more broadly, by the memory model implemented by the compiler. Which simply chooses memory addresses that are aligned, sometimes intentionally leaving unused gaps of a few bytes to get the next variable aligned. An update to a variable that's larger than the native word size of the processor can never be atomic.
But much more important are the kind of processor instructions you need to make threading work. Every processor implements a variant of the CAS instruction, compare-and-swap. It is the core atomic instruction you need to implement synchronization. Higher level synchronization primitives, like monitors (aka condition variables), mutexes, signals, critical sections and semaphores are all built on top of that core instruction.
That's the minimum, a processor usually provide extra ones to make simple operations atomic. Like incrementing a variable, at its core an interruptible operation since it requires a read-modify-write operation. Having a need for it be atomic is very common, most any C++ program relies on it for example to implement reference counting.
volatility does not guarantee thread safety at all
It doesn't. It is an attribute that dates from much easier times, back when machines only had a single processor core. It only affects code generation, in particular the way a code optimizer tries to eliminate memory accesses and use a copy of the value in a processor register instead. Makes a big, big difference to code execution speed, reading a value from a register is easily 3 times faster than having to read it from memory.
Applying volatile ensures that the code optimizer does not consider the value in the register to be accurate and forces it to read memory again. It truly only matters on the kind of memory values that are not stable by themselves, devices that expose their registers through memory-mapped I/O. It has been abused heavily since that core meaning to try to put semantics on top of processors with a weak memory model, Itanium being the most egregious example. What you get with volatile today is strongly dependent on the specific compiler and runtime you use. Never use it for thread-safety, always use a synchronization primitive instead.
simply being atomic/volatile is thread-safe
Programming would be much simpler if that was true. Atomic operations only cover the very simple operations, a real program often needs to keep an entire object thread-safe. Having all its members updated atomically and never expose a view of the object that is partially updated. Something as simple as iterating a list is a core example, you can't have another thread modifying the list while you are looking at its elements. That's when you need to reach for the higher-level synchronization primitives, the kind that can block code until it is safe to proceed.
Real programs often suffer from this synchronization need and exhibit Amdahls' law behavior. In other words, adding an extra thread does not actually make the program faster. Sometimes actually making it slower. Whomever finds a better mouse-trap for this is guaranteed a Nobel, we're still waiting.
In general, C and C++ don't give any guarantees about how reading or writing a 'volatile' object behaves in multithreaded programs. (The 'new' C++11 probably does since it now includes threads as part of the standard, but tradiationally threads have not been part of standard C or C++.) Using volatile and making assumptions about atomicity and cache-coherence in code that's meant to be portable is a problem. It's a crap-shoot as to whether a particular compiler and platform will treat accesses to 'volatile' objects in a thread-safe way.
The general rule is: 'volatile' is not enough to ensure thread safe access. You should use some platform-provided mechanism (usually some functions or synchronisation objects) to access thread-shared values safely.
Now, specifically on Windows, specifically with the VC++ 2005+ compiler, and specifically on x86 and x64 systems, accessing a primitive object (like an int) can be made thread-safe if:
On 64- and 32-bit Windows, the object has to be a 32-bit type, and it has to be 32-bit aligned.
On 64-bit Windows, the object may also be a 64-bit type, and it has to be 64-bit aligned.
It must be declared volatile.
If those are true, then accesses to the object will be volatile, atomic and be surrounded by instructions that ensure cache-coherency. The size and alignment conditions must be met so that the compiler makes code that performs atomic operations when accessing the object. Declaring the object volatile ensures that the compiler doesn't make code optimisations related to caching previous values it may have read into a register and ensures that code generated includes appropriate memory barrier instructions when it's accessed.
Even so, you're probably still better off using something like the Interlocked* functions for accessing small things, and bog standard synchronisation objects like Mutexes or CriticalSections for larger objects and data structures. Ideally, get libraries for and use data structures that already include appropriate locks. Let your libraries & OS do the hard work as much as possible!
In your example, I expect you do need to use a thread-safe access to update val64 whether the thread is started yet or not.
If the thread was already running, then you would definitely need some kind of thread-safe write to val64, either using InterchangeExchange64 or similar, or by acquiring and releasing some kind of synchronisation object which will perform appropriate memory barrier instructions. Similarly, the thread would need to use a thread-safe accessor to read it as well.
In the case where the thread hasn't been resumed yet, it's a bit less clear. It's possible that ResumeThread might use or act like a synchronisation function and do the memory barrier operations, but the documentation doesn't specify that it does, so it is better to assume that it doesn't.
References:
On atomicity of 32- and 64- bit aligned types... https://msdn.microsoft.com/en-us/library/windows/desktop/ms684122%28v=vs.85%29.aspx
On 'volatile' including memory fences... https://msdn.microsoft.com/en-us/library/windows/desktop/ms686355%28v=vs.85%29.aspx
I found out three function from MSDN , below:
1.InterlockedDecrement().
2.InterlockedDecrementAcquire().
3.InterlockedDecrementRelease().
I knew those fucntion use to decrement a value as an atomic operation, but i don't know distinction between the three function
(um... but don't ask me what does it mean exactly)
I'll take a stab at that.
Something to remember is that the compiler, or the CPU itself, may reorder memory reads and writes if they appear to not deal with each other.
This is useful, for instance, if you have some code that, maybe is updating a structure:
if ( playerMoved ) {
playerPos.X += dx;
playerPos.Y += dy;
// Keep the player above the world's surface.
if ( playerPos.Z + dz > 0 ) {
playerPos.Z += dz;
}
else {
playerPos.Z = 0;
}
}
Most of above statements may be reordered because there's no data dependency between them, in fact, a superscalar CPU may execute most of those statements simultaneously, or maybe would start working on the Z section sooner, since it doesn't affect X or Y, but might take longer.
Here's the problem with that - lets say that you're attempting lock-free programming. You want to perform a whole bunch of memory writes to, maybe, fill in a shared queue. You signal that you're done by finally writing to a flag.
Well, since that flag appears to have nothing to do with the rest of the work being done, the compiler and the CPU may reorder those instructions, and now you may set your 'done' flag before you've actually committed the rest of the structure to memory, and now your "lock-free" queue doesn't work.
This is where Acquire and Release ordering semantics come into play. I set that I'm doing work by setting a flag or so with an Acquire semantic, and the CPU guarantees that any memory games I play after that instruction stay actually below that instruction. I set that I'm done by setting a flag or so with a Release semantic, and the CPU guarantees that any memory games I had done just before the release actually stay before the release.
Normally, one would do this using explicit locks - mutexes, semaphores, etc, in which the CPU already knows it has to pay attention to memory ordering. The point of attempting to create 'lock free' data structures is to provide data structures that are thread safe (for some meaning of thread safe), that don't use explicit locks (because they are very slow).
Creating lock-free data structures is possible on a CPU or compiler that doesn't support acquire/release ordering semantics, but it usually means that some slower memory ordering semantic is used. For instance, you could issue a full memory barrier - everything that came before this instruction has to actually be committed before this instruction, and everything that came after this instruction has to be committed actually after this instruction. But that might mean that I wait for a bunch of actually irrelevant memory writes from earlier in the instruction stream (perhaps function call prologue) that has nothing to do with the memory safety I'm trying to implement.
Acquire says "only worry about stuff after me". Release says "only worry about stuff before me". Combining those both is a full memory barrier.
http://preshing.com/20120913/acquire-and-release-semantics/
Acquire semantics is a property which can only apply to operations
which read from shared memory, whether they are read-modify-write
operations or plain loads. The operation is then considered a
read-acquire. Acquire semantics prevent memory reordering of the
read-acquire with any read or write operation which follows it in
program order.
Release semantics is a property which can only apply to operations
which write to shared memory, whether they are read-modify-write
operations or plain stores. The operation is then considered a
write-release. Release semantics prevent memory reordering of the
write-release with any read or write operation which precedes it in
program order.
(um... but don't ask me what does it mean exactly)
If it was absolutely required for all the threads in a block to be at the same point in the code, do we require the __syncthreads function if the number of threads being launched is equal to the number of threads in a warp?
Note: No extra threads or blocks, just a single warp for the kernel.
Example code:
shared _voltatile_ sdata[16];
int index = some_number_between_0_and_15;
sdata[tid] = some_number;
output[tid] = x ^ y ^ z ^ sdata[index];
Updated with more information about using volatile
Presumably you want all threads to be at the same point since they are reading data written by other threads into shared memory, if you are launching a single warp (in each block) then you know that all threads are executing together. On the face of it this means you can omit the __syncthreads(), a practice known as "warp-synchronous programming". However, there are a few things to look out for.
Remember that a compiler will assume that it can optimise providing the intra-thread semantics remain correct, including delaying stores to memory where the data can be kept in registers. __syncthreads() acts as a barrier to this and therefore ensures that the data is written to shared memory before other threads read the data. Using volatile causes the compiler to perform the memory write rather than keep in registers, however this has some risks and is more of a hack (meaning I don't know how this will be affected in the future)
Technically, you should always use __syncthreads() to conform with the CUDA Programming Model
The warp size is and always has been 32, but you can:
At compile time use the special variable warpSize in device code (documented in the CUDA Programming Guide, under "built-in variables", section B.4 in the 4.1 version)
At run time use the warpSize field of the cudaDeviceProp struct (documented in the CUDA Reference Manual)
Note that some of the SDK samples (notably reduction and scan) use this warp-synchronous technique.
You still need __syncthreads() even if warps are being executed in parallel. The actual execution in hardware may not be parallel because the number of cores within a SM (Stream Multiprocessor) can be less than 32. For example, GT200 architecture has 8 cores in each SM, so you can never be sure all threads are in the same point in the code.
I'm reviewing some code and feel suspicious of the technique being used.
In a linux environment, there are two processes that attach multiple
shared memory segments. The first process periodically loads a new set
of files to be shared, and writes the shared memory id (shmid) into
a location in the "master" shared memory segment. The second process
continually reads this "master" location and uses the shmid to attach
the other shared segments.
On a multi-cpu host, it seems to me it might be implementation dependent
as to what happens if one process tries to read the memory while it's
being written by the other. But perhaps hardware-level bus locking prevents
mangled bits on the wire? It wouldn't matter if the reading process got
a very-soon-to-be-changed value, it would only matter if the read was corrupted
to something that was neither the old value nor the new value. This is an edge case: only 32 bits are being written and read.
Googling for shmat stuff hasn't led me to anything that's definitive in this
area.
I suspect strongly it's not safe or sane, and what I'd really
like is some pointers to articles that describe the problems in detail.
It is legal -- as in the OS won't stop you from doing it.
But is it smart? No, you should have some type of synchronization.
There wouldn't be "mangled bits on the wire". They will come out either as ones or zeros. But there's nothing to say that all your bits will be written out before another process tries to read them. And there are NO guarantees on how fast they'll be written vs how fast they'll be read.
You should always assume there is absolutely NO relationship between the actions of 2 processes (or threads for that matter).
Hardware level bus locking does not happen unless you get it right. It can be harder then expected to make your compiler / library / os / cpu get it right. Synchronization primitives are written to makes sure it happens right.
Locking will make it safe, and it's not that hard to do. So just do it.
#unknown - The question has changed somewhat since my answer was posted. However, the behavior you describe is defiantly platform (hardware, os, library and compiler) dependent.
Without giving the compiler specific instructions, you are actually not guaranteed to have 32 bits written out in one shot. Imagine a situation where the 32 bit word is not aligned on a word boundary. This unaligned access is acceptable on x86, and in the case of the x68, the access is turned into a series of aligned accesses by the cpu.
An interrupt can occurs between those operations. If a context switch happens in the middle, some of the bits are written, some aren't. Bang, You're Dead.
Also, lets think about 16 bit cpus or 64 bit cpus. Both of which are still popular and don't necessarily work the way you think.
So, actually you can have a situation where "some other cpu-core picks up a word sized value 1/2 written to". You write you code as if this type of thing is expected to happen if you are not using synchronization.
Now, there are ways to preform your writes to make sure that you get a whole word written out. Those methods fall under the category of synchronization, and creating synchronization primitives is the type of thing that's best left to the library, compiler, os, and hardware designers. Especially if you are interested in portability (which you should be, even if you never port your code)
The problem's actually worse than some of the people have discussed. Zifre is right that on current x86 CPUs memory writes are atomic, but that is rapidly ceasing to be the case - memory writes are only atomic for a single core - other cores may not see the writes in the same order.
In other words if you do
a = 1;
b = 2;
on CPU 2 you might see location b modified before location 'a' is. Also if you're writing a value that's larger than the native word size (32 bits on an x32 processor) the writes are not atomic - so the high 32 bits of a 64 bit write will hit the bus at a different time from the low 32 bits of the write. This can complicate things immensely.
Use a memory barrier and you'll be ok.
You need locking somewhere. If not at the code level, then at the hardware memory cache and bus.
You are probably OK on a post-PentiumPro Intel CPU. From what I just read, Intel made their later CPUs essentially ignore the LOCK prefix on machine code. Instead the cache coherency protocols make sure that the data is consistent between all CPUs. So if the code writes data that doesn't cross a cache-line boundary, it will work. The order of memory writes that cross cache-lines isn't guaranteed, so multi-word writes are risky.
If you are using anything other than x86 or x86_64 then you are not OK. Many non-Intel CPUs (and perhaps Intel Itanium) gain performance by using explicit cache coherency machine commands, and if you do not use them (via custom ASM code, compiler intrinsics, or libraries) then writes to memory via cache are not guaranteed to ever become visible to another CPU or to occur in any particular order.
So just because something works on your Core2 system doesn't mean that your code is correct. If you want to check portability, try your code also on other SMP architectures like PPC (an older MacPro or a Cell blade) or an Itanium or an IBM Power or ARM. The Alpha was a great CPU for revealing bad SMP code, but I doubt you can find one.
Two processes, two threads, two cpus, two cores all require special attention when sharing data through memory.
This IBM article provides an excellent overview of your options.
Anatomy of Linux synchronization methods
Kernel atomics, spinlocks, and mutexes
by M. Tim Jones (mtj#mtjones.com), Consultant Engineer, Emulex
http://www.ibm.com/developerworks/linux/library/l-linux-synchronization.html
I actually believe this should be completely safe (but is depends on the exact implementation). Assuming the "master" segment is basically an array, as long as the shmid can be written atomically (if it's 32 bits then probably okay), and the second process is just reading, you should be okay. Locking is only needed when both processes are writing, or the values being written cannot be written atomically. You will never get a corrupted (half written values). Of course, there may be some strange architectures that can't handle this, but on x86/x64 it should be okay (and probably also ARM, PowerPC, and other common architectures).
Read Memory Ordering in Modern Microprocessors, Part I and Part II
They give the background to why this is theoretically unsafe.
Here's a potential race:
Process A (on CPU core A) writes to a new shared memory region
Process A puts that shared memory ID into a shared 32-bit variable (that is 32-bit aligned - any compiler will try to align like this if you let it).
Process B (on CPU core B) reads the variable. Assuming 32-bit size and 32-bit alignment, it shouldn't get garbage in practise.
Process B tries to read from the shared memory region. Now, there is no guarantee that it'll see the data A wrote, because you missed out the memory barrier. (In practise, there probably happened to be memory barriers on CPU B in the library code that maps the shared memory segment; the problem is that process A didn't use a memory barrier).
Also, it's not clear how you can safely free the shared memory region with this design.
With the latest kernel and libc, you can put a pthreads mutex into a shared memory region. (This does need a recent version with NPTL - I'm using Debian 5.0 "lenny" and it works fine). A simple lock around the shared variable would mean you don't have to worry about arcane memory barrier issues.
I can't believe you're asking this. NO it's not safe necessarily. At the very least, this will depend on whether the compiler produces code that will atomically set the shared memory location when you set the shmid.
Now, I don't know Linux, but I suspect that a shmid is 16 to 64 bits. That means it's at least possible that all platforms would have some instruction that could write this value atomically. But you can't depend on the compiler doing this without being asked somehow.
Details of memory implementation are among the most platform-specific things there are!
BTW, it may not matter in your case, but in general, you have to worry about locking, even on a single CPU system. In general, some device could write to the shared memory.
I agree that it might work - so it might be safe, but not sane.
The main question is if this low-level sharing is really needed - I am not an expert on Linux, but I would consider to use for instance a FIFO queue for the master shared memory segment, so that the OS does the locking work for you. Consumer/producers usually need queues for synchronization anyway.
Legal? I suppose. Depends on your "jurisdiction". Safe and sane? Almost certainly not.
Edit: I'll update this with more information.
You might want to take a look at this Wikipedia page; particularly the section on "Coordinating access to resources". In particular, the Wikipedia discussion essentially describes a confidence failure; non-locked access to shared resources can, even for atomic resources, cause a misreporting / misrepresentation of the confidence that an action was done. Essentially, in the time period between checking to see whether or not it CAN modify the resource, the resource gets externally modified, and therefore, the confidence inherent in the conditional check is busted.
I don't believe anybody here has discussed how much of an impact lock contention can have over the bus, especially on bus bandwith constrained systems.
Here is an article about this issue in some depth, they discuss some alternative schedualing algorythems which reduse the overall demand on exclusive access through the bus. Which increases total throughput in some cases over 60% than a naieve scheduler (when considering the cost of an explicit lock prefix instruction or implicit xchg cmpx..). The paper is not the most recent work and not much in the way of real code (dang academic's) but it worth the read and consideration for this problem.
More recent CPU ABI's provide alternative operations than simple lock whatever.
Jeffr, from FreeBSD (author of many internal kernel components), discusses monitor and mwait, 2 instructions added for SSE3, where in a simple test case identified an improvement of 20%. He later postulates;
So this is now the first stage in the
adaptive algorithm, we spin a while,
then sleep at a high power state, and
then sleep at a low power state
depending on load.
...
In most cases we're still idling in
hlt as well, so there should be no
negative effect on power. In fact, it
wastes a lot of time and energy to
enter and exit the idle states so it
might improve power under load by
reducing the total cpu time required.
I wonder what would be the effect of using pause instead of hlt.
From Intel's TBB;
ALIGN 8
PUBLIC __TBB_machine_pause
__TBB_machine_pause:
L1:
dw 090f3H; pause
add ecx,-1
jne L1
ret
end
Art of Assembly also uses syncronization w/o the use of lock prefix or xchg. I haven't read that book in a while and won't speak directly to it's applicability in a user-land protected mode SMP context, but it's worth a look.
Good luck!
If the shmid has some type other than volatile sig_atomic_t then you can be pretty sure that separate threads will get in trouble even on the very same CPU. If the type is volatile sig_atomic_t then you can't be quite as sure, but you still might get lucky because multithreading can do more interleaving than signals can do.
If the shmid crosses cache lines (partly in one cache line and partly in another) then while the writing cpu is writing you sure find a reading cpu reading part of the new value and part of the old value.
This is exactly why instructions like "compare and swap" were invented.
Sounds like you need a Reader-Writer Lock : http://en.wikipedia.org/wiki/Readers-writer_lock.
The answer is - it's absolutely safe to do reads and writes simultaneously.
It is clear that the shm mechanism
provides bare-bones tools for the
user. All access control must be taken
care of by the programmer. Locking and
synchronization is being kindly
provided by the kernel, this means the
user have less worries about race
conditions. Note that this model
provides only a symmetric way of
sharing data between processes. If a
process wishes to notify another
process that new data has been
inserted to the shared memory, it will
have to use signals, message queues,
pipes, sockets, or other types of IPC.
From Shared Memory in Linux article.
The latest Linux shm implementation just uses copy_to_user and copy_from_user calls, which are synchronised with memory bus internally.