MATLAB: how to transform one image to another image - image

I am trying to transform one image to another in MATLAB, and in the meantime also get the transformation function T(x,y) from this operation (eg. T(x,y) = (x + a(x,y), y + b(x,y)) ). Let's use the following figures as an example. I want to transform the square in the first figure to the circle in the other figure, and output gives me a transformation function, so whenever I use the function on the square I will get the circle.
Functions I have looked into:
I have looked into imwarp, but it should be only for geometric transformation (scaling, rotating, shearing). I don't think this is useful in transforming a square to a circle, while not providing any transformation matrix beforehand.
I have looked into using imregconfig and imregister from a MATLAB example, but it seems to only work for images with same structure but different intensities. Plus, it doesn't give out any transformation function. Please correct me if I am wrong.
Thank you in advance for any help!

The solution space for valid transformations is infinite. How do we choose the "right" one?
One possible transformation for those inputs is to translate the square -0.5 in x and -0.5 in y. Then scale it to double the size (x' = 2x, y' = 2y) and apply a square-to-circle mapping function. (Solution 1)
Another completely valid transformation function could run all the points in the input through the expression
( (x == 0 || x == 1) && (0 <= y <= 1) || ( (y == 0 || y == 1) && (0 <= x <= 1) )
and if all points pass, simply print out "x^2 + y^2 = 1". (Solution 2)
Solutions (1) and (2) both produce code that seems to satisfy the case you've presented, but clearly (2) is so non-general as to be useless. I think you need to define the problem more precisely before we can start writing a solution in code.

Related

How to fit rotated hyperbola accurately?

My experimental data points looks like pieces of hyperbola. Below I provide a code (Matlab), which generates "dummy" data, which is very similar to original one:
function [x_out,y_out,alpha1,alpha2,ecK,offsetX,offsetY,branchDirection] = dummyGenerator(mu_alpha)
alpha_range=0.1;
numberPoint2Return=100; % number of points to return
ecK=10.^((rand(1)-0.5)*2*2); % eccentricity-related parameter
% slope of the first asimptote (radians)
alpha1 = ((rand(1)-0.5)*alpha_range+mu_alpha);
% slope of the first asimptote (radians)
alpha2 = -((rand(1)-0.5)*alpha_range+mu_alpha);
beta = pi-abs(alpha1-alpha2); % angle between asimptotes (radians)
branchDirection = datasample([0,1],1); % where branch directed
% up: branchDirection==0;
% down: branchDirection==1;
% generate branch
x = logspace(-3,2,numberPoint2Return*100)'; %over sampling
y = (tan(pi/2-beta)*x+ecK./x);
% rotate branch using branchDirection
theta = -(pi/2-alpha1)-pi*branchDirection;
% get rotation matrix
rotM = [ cos(theta), -sin(theta);
sin(theta), cos(theta) ];
% get rotated coordinates
XY1=[x,y]*rotM;
x1=XY1(:,1); y1=XY1(:,2);
% remove possible Inf
x1(~isfinite(y1))=[];
y1(~isfinite(y1))=[];
% add noise
y1=((rand(numel(y1),1)-0.5)+y1);
% downsampling
%x_out=linspace(min(x1),max(x1),numberPoint2Return)';
x_out=linspace(-10,10,numberPoint2Return)';
y_out=interp1(x1,y1,x_out,'nearest');
% randomize offset
offsetX=(rand(1)-0.5)*50;
offsetY=(rand(1)-0.5)*50;
x_out=x_out+offsetX;
y_out=y_out+offsetY;
end
Typical results are presented on figure:
The data has following important property: slopes of both asymptotes comes from the same distribution (just different signs), so for my fitting I have rather goo estimation for mu_alpha.
Now starts the problematic part. I try to fit these data points. The main idea of my approach is to find a rotation to obtain y=k*x+b/x shape and then just fit it.
I use the following code:
function Rsquare = fitFunction(x,y,alpha1,alpha2,ecK,offsetX,offsetY)
R=[];
for branchDirection=[0 1]
% translate back
xt=x-offsetX;
yt=y-offsetY;
% rotate back
theta = (pi/2-alpha1)+pi*branchDirection;
rotM = [ cos(theta), -sin(theta);
sin(theta), cos(theta) ];
XY1=[xt,yt]*rotM;
x1=XY1(:,1); y1=XY1(:,2);
% get fitted values
beta = pi-abs(alpha1-alpha2);
%xf = logspace(-3,2,10^3)';
y1=y1(x1>0);
x1=x1(x1>0);
%x1=x1-min(x1);
xf=sort(x1);
yf=(tan(pi/2-beta)*xf+ecK./xf);
R(end+1)=sum((xf-x1).^2+(yf-y1).^2);
end
Rsquare=min(R);
end
Unfortunately this code works not good, very often I have bad results, even when I use known(from simulation) initial parameters.
Could You help me to find a good solution for such fitting problem?
UPDATE:
I find a solution (see Answer), but
I still have a small problem - my estimation of aparameter is bad, sometimes I did no have good fits because of this reason.
Could You suggest some ideas how to estimate a from experimental point?
I found the main problem (it was my brain as usually)! I did not know about general equation of hyperbola. So equation for my hyperbolas are:
((x-x0)/a).^2-((y-y0)/b).^2=-1
So ,we may not take care about sign, then I may use the following code:
mu_alpha=pi/6;
[x,y,alpha1,alpha2,ecK,offsetX,offsetY,branchDirection] = dummyGenerator(mu_alpha);
% hyperb=#(alpha,a,x0,y0) tan(alpha)*a*sqrt(((x-x0)/a).^2+1)+y0;
hyperb=#(x,P) tan(P(1))*P(2)*sqrt(((x-P(3))./P(2)).^2+1)+P(4);
cost =#(P) fitFunction(x,y,P);
x0=mean(x);
y0=mean(y);
a=(max(x)-min(x))./20;
P0=[mu_alpha,a,x0,y0];
[P,fval] = fminsearch(cost,P0);
hold all
plot(x,y,'-o')
plot(x,hyperb(x,P))
function Rsquare = fitFunction(x,y,P)
%x=sort(x);
yf=tan(P(1))*P(2)*sqrt(((x-P(3))./P(2)).^2+1)+P(4);
Rsquare=sum((yf-y).^2);
end
P.S. LaTex tags did not work for me

Plotting two variables function

This question is for learning purpose. I am writing my own function to plot an equation. For example:
function e(x) { return sin(x); }
plot(e);
I wrote a plot function that takes function as parameter. The plotting code is simple, x run from some value to some value and increase by small step. This is plot that the plot() manage to produce.
But there is the problem. It cannot express the circle equation like x2 + y2 = 1. So the question would be how should the plot and equation function look like to be able to handle two variables.
Noted that I am not only interesting in two circle equation. A more generalize way of plotting function with two variables.
Well to plot a non function 1D equation (x,y variables) you have 3 choices:
convert to parametric form
so for example x^2 + y^2 = 1 will become:
x = cos(t);
y = sin(t);
t = <0,2*PI>
So plot each function as 1D function plot while t is used as parameter. But for this you need to exploit mathematic identities and substitute ... That is not easily done programaticaly.
convert to 1D functions
non function means you got more than 1 y values for some x values. If you separate your equation into intervals and divide to all cases covering whole plot then you can plot each derived function instead.
So you derive y algebraicaly (let assume unit circle again):
x^2 + y^2 = 1
y^2 = 1 - x^2
y = +/- sqrt (1 - x^2)
----------------------
y1 = +sqrt (1 - x^2)
y2 = -sqrt (1 - x^2)
x = <-1,+1>
this is also not easily done programaticaly but it is a magnitude easier than #1.
do a 2D plot using equation as predicator
simply loop your view through all pixels and render only those for which the equation is true. So again unit circle:
for (x=-1.0;x<=+1.0;x+=0.001)
for (y=-1.0;y<=+1.0;y+=0.001)
if (fabs((x*x)+(y*y)-1.0)<=1e-6)
plot_pixel(x,y,some_color); // x,y should be rescaled and offset to the actual plot view
So you just convert your equation to implicit form:
x^2 + y^2 = 1
-----------------
x^2 + y^2 - 1 = 0
and compare to zero with some threshold (to avoid FPU accuracy problems):
| x^2 + y^2 - 1 | <= threshold_near_zero
The threshold is half size of plot lines width. So this way you can easily change plot width to any pixel size... As you can see this is easily done programaticaly but the plot is slower as you need to loop through all the pixels of the plot view. The step for x,y for loops should match pixel size of the view scale.
Also while using equation as predicate you should handle math singularities as with blind probing you will most likely hit some like division by zero, domain errors for asin,acos,sqrt,etc.
So for arbitrary 1D non function use #3. unless you got some mighty symbolic math engine for #1 or #2.
Defination of a function : A function f takes an input x, and returns a single output f(x).
Now it means for any input there will be one and only one unique output. Like y = sin(x). this is a function on x and y definnes that function.
For equaltion like (x*x) + (y*y) = 1. there are two possible values of y for a single value of `x, hence it can not be termed as a valid equaltion for a function.
If you need to draw it then one possible solution is to plot two points for a single value of x, i.e. sqrt(1-(x*x)) and other -1*sqrt(1-(x*x)). Plot both the values (one will be positive other will be negative with the same absolute value).

Intersection of axis-aligned rectangular cuboids (MBR) in one dimension

Currently I'm doing benchmarks on time series indexing algorithms. Since most of the time no reference implementations are available, I have to write my own implementations (all in Java). At the moment I am stuck a little at section 6.2 of a paper called Indexing multi-dimensional time-series with support for multiple distance measures available here in PDF : http://hadjieleftheriou.com/papers/vldbj04-2.pdf
A MBR (minimum bounding rectangle) is basically a rectanglular cubiod with some coordinates and directions. As an example P and Q are two MBRs with P.coord={0,0,0} and P.dir={1,1,3} and Q.coords={0.5,0.5,1} and Q.dir={1,1,1} where the first entries represent the time dimension.
Now I would like to calculate the MINDIST(Q,P) between Q and P :
However I am not sure how to implement the "intersection of two MBRs in the time dimension" (Dim 1) since I am not sure what the intersection in the time dimension actually means. It is also not clear what h_Q, l_Q, l_P, h_P mean, since this notation is not explained (my guess is they mean something like highest or lowest value of a dimension in the intersection).
I would highly appreciate it, if someone could explain to me how to calculate the intersection of two MBRs in the first dimension and maybe enlighten me with an interpretation of the notation. Thanks!
Well, Figure 14 in your paper explains the time intersection. And the rectangles are axis-aligned, thus it makes sense to use high and low on each coordinate.
The multiplication sign you see is not a cross product, just a normal multiplication, because on both sides of it you have a scalar, and not vectors.
However I must agree that the discussions on page 14 are rather fuzzy, but they seem to tell us that both types of intersections (complete and partial), when they are have a t subscript, mean the norm of the intersection along the t coordinate.
Thus it seems you could factorize the time intersection to get a formula that would be :
It is worth noting that, maybe counter-intuitively, when your objects don't intersect on the time plane, their MINDIST is defined to be 0.
Hence the following pseudo-code ;
mindist(P, Q)
{
if( Q.coord[0] + Q.dir[0] < P.coord[0] ||
Q.coord[0] > P.coord[0] + P.dir[0] )
return 0;
time = min(Q.coord[0] + Q.dir[0], P.coord[0] + P.dir[0]) - max(Q.coord[0], P.coord[0]);
sum = 0;
for(d=1; d<D; ++d)
{
if( Q.coord[d] + Q.dir[d] < P.coord[d] )
x = Q.coord[d] + Q.dir[d] - P.coord[d];
else if( P.coord[d] + P.dir[d] < Q.coord[d] )
x = P.coord[d] + P.dir[d] - Q.coord[d];
else
x = 0;
sum += x*x;
}
return sqrt(time * sum);
}
Note the absolute values in the paper are unnecessary since we just checked which values where bigger, and we thus know we only add positive numbers.

What do the elements in a homography matrix mean?

I'm new to image processing, but I'm using EMGU for C# image analysis. However, I know the homography matrix isn't unique to EMGU, and so perhaps someone with knowledge of another language can explain better.
Please (in as simplified as can be) can someone explain what each element does. I've looked this up online but can't find an answer that I can properly understand (as I said, I'm kinda new to all this!)
I analyse 2 images, both 2 dimensional. Therefore a 3x3 matrix is needed to account for the rotation / translation of the image. If no movement is detected, the homography matrix is:
100,
010,
001
I know from research (eg OpenCV Homography, Transform a point, what is this code doing?) that:
10Tx,
01Ty,
XXX
The 10,01 bit is the rotation of the x and y coordinates. The Tx and Ty bits are the translational movement, but what is the XXX bit? This is what I don't understand? Is it something to do with affine transformations? Please can someone explain:
1. If I'm currently right in what I say above.
2. what the XXX bit means
It's not that difficult to understand if you have a grasp of matrix multiplication. Assume you point x is
/a\
\b/,
and you want to rotate the coordinate system by A:
/3 4\
\5 6/
and and "move it" it by t
/2\
\2/.
The latter matrices are the components of the affine transformation to get the new point y:
y = A*x + t = <a'; b'>T //(T means transposed).
As you know, to get that, one can construct a 3d matrix B and a vector x' looking like
/3 4 2\ /a\
B = |5 6 2| , x' = |b|
\0 0 1/ \1/
such that
/a'\
y' = |b'| = B*x'
\ 1/
from which you can extract y. Let's see how that works. In the original transformation (using addition), the first step would be to carry out the multiplication, ie. the rotating part y_r:
y_r = A*x = <3a+4b; 5a+6b>T
then you add the "absolute" part:
y = y_r + t = <3a+4b+2; 5a+6b+2>T
Now look at how B works. I'll calculate y' row by row:
1) a' = 3*a + 4*b + 2*1
2) b' = 5*a + 6*b + 2*1
3) the rest: 0*a + 0*b + 1*1 = 1
Just what we expected. First, the rotation part gets calculated--addition and multiplication. Then, the x-part of the translational part gets added, multiplied by 1--it stays the same. The same thing for the second row.
In the third row, a and b are dropped (multiplied by 0). The last part is kept the same, and happens to be 1. So, all about that last line is to "drop" the values of the point and keep the 1.
It could be argued, then, that a 2x3 matrix would be enough for that. That's partially true, but has one significant disadvantage: you loose composability. Suppose you are basically satisfied with B, but want to mirror one coordinate. Then you can choose another transformation matrix
/-1 0 0\
C = | 0 1 0|
\ 0 0 1/
and have a result
y'' = C*B*x' = <-3a+4b+2; 5a+6b+2; 1>T
This simple multiplication could not be done that easily with 2x3 matrices, simply because of the properties of matrix multiplication.
In principle, in the above, the last row (the XXX) could also be anything else of the form <0;0;x>. It was there just to drop the point values. It is however necessary exactly like this to make composition by multiplication work.
Finally, wikipedia seems quite informative to me in this case.
First of all affine transformation are those that preserve straight lines and can many of arbitrary dimensionality
Homography describes the mapping across two planes or what happens during pure camera rotation.
The last row represents various shears (that is when x is function of both x, y)

Image manipulation code in MATLAB (corner detection)

I'd like to know exactly how this line of code works
corners = (m==n)&(n>threshold);
It's in a piece of code I'm using and I want to understand it. Basically, m and n are both equal-sized images, and "threshold" is a decimal value.
To understand the context, a segment of the code is below.
% compute the m cornerness measure
m = (ix2s.*iy2s - ixys.^2) - 0.04*(ix2s+iy2s).^2;
% perform non-maximal suppression using ordfilt2
n = ordfilt2(m, radius^2, ones([radius radius]));
% display corner spots
corners = (m==n)&(n>threshold);
% superimpose corners
Q = corners+im;
Q(Q>1) = 1;
C = repmat(im,[1 1 3]);
C(:,:,1) = Q;
If I understand correctly, n is the max of m ("cornerness measure") for the vicinity, so the line means - "if m is the local maximum and large enough(larger than threshold), then this is probably a corner", it could have arguably been more readable as:
corners = (m==n)&(m>threshold);
You should read more about Harris corner detector. Taken from Wikipedia:
This line is implementation of the function mentioned above. It is used to detect corners.

Resources