Simplest way to convert 2D symbols to 3D in a video stream - algorithm

We need to convert some specific stream 2D video to 3D video with some symbologies on it. To make an example:
<iframe width="640" height="360" src="https://www.youtube.com/embed/-YKYjigYgok" frameborder="0" allowfullscreen></iframe>
edit: I added the video link here due to some errors in HTML insertion.
this is something similar to our project. As you can see, heights are indexed as colors, some shades, shadows are also are seen. the question is, can we convert those mountains and other shapes into 3D in a simple way? I ve seen many 2D-3D converters out in the market but they are undeterministic. We want to make our niche software for this and don't know where to start. We can utilize colors and shadows(for height and light direction) and also we have the altitude of the plane. Once we handle the mountains and other contents, putting 3D symbology is not an issue for us.
What I seek here is just some direction to get this done in a fastest way. Regards.

I think what you're looking for is called heightmap. You start from a 2d matrix with the height values in every cell and generate a 3D terrain based on the matrix.
The naive way to do it is to assign a vertex to each point in the matrix and then link them together with simple triangles.
As you can imagine is your map is large this will mean a lot of triangles. There are techniques that try to compress flat spaces or things that are very far away so that you spend the triangles on areas where they add more details. See for example quad-trees. This is also why some renderings seem non-deterministic since the algorithm is going to change the geometry on far away things in a way that it becomes visible. This can be solved by tunning the algorithms and put a larger weight on how visible the change is. A cheap-ish way of doing it is to measure the volume difference between the different levels of details, but only works decently when you don't have sharp spikes or pits in you map.
I assume assigning colors to the heights is not a problem here.

Related

Very fast boolean difference between two meshes

Let's say I have a static object and a movable object which can be moved and rotated, what is the best way to very quickly calculate the difference of those two meshes?
Precision here is not so important, speed is though, since I have to use it in the update phase of the main loop.
Maybe, given the strict time limit, modifying the static object's vertices and triangles directly is to be preferred. Should voxels be preferred here instead?
EDIT: The use case is an interactive viewer of a wood panel (parallelepiped) and a milling tool (a revolved contour, some like these).
The milling tool can be rotated and can work oriented at varying degrees (5 axes).
EDIT 2: The milling tool may not pierce the wood.
EDIT 3: The panel can be as large as 6000x2000mm and the milling tool can be as little as 3x3mm.
If you need the best possible performance then the generic CSG approach may be too slow for you (but still depending on meshes and target hardware).
You may try to find some specialized algorithm, coded for your specific meshes. Let's say you have two cubes - one is a 'wall' and second is a 'window' - then it's much easier/faster to compute resulting mesh with your custom code, than full CSG. Unfortunately you don't say anything about your meshes.
You may also try to make it a 2D problem, use some simplified meshes to compute the result that will 'look like expected'.
If the movement of your meshes is somehow limited you may be able to precompute full or partial results for different mesh combinations to use at runtime.
You may use some space partitioning like BSP or Octrees to divide your meshes during precomputing stage. This way you could split one big problem into many smaller ones that may be faster to compute or at least to make the solution multi-threaded.
You've said about voxels - if you're fine with their look and limits you may voxelize both meshes and just read and mix two voxel values, instead of one. Then you would triangulate it using algorithm like Marching Cubes.
Those are all just some general ideas but we'll need better info to help you more.
EDIT:
With your description it looks like you're modeling some bas-relief, so you may use Relief Mapping to fake this effect. It's based on a height map stored as a texture, so you'd need to just update few pixels of the texture and render a plane. It should be quite fast compared to other approaches, the downside is that it's based on height map, so you can't get shapes that Tee Slot or Dovetail cutter would create.
If you want the real geometry then I'd start from a simple plane as your panel (don't need full 3D yet, just a front surface) and divide it with a 2D grid. The grid element should be slightly bigger than the drill size and every element is a separate mesh. In the frame update you'd cut one, or at most 4 elements that are touched with a drill. Thanks to this grid all your cutting operations will be run with very simple mesh so they may work with your intended speed. You can also cut all current elements in separate threads. After the cutting is done you'll upload to the GPU only currently modified elements so you may end up with quite complex mesh but small modifications per frame.

Is it possible to import a Collada model that aligns to pixels?

Assume I have a model that is simply a cube. (It is more complicated than a cube, but for the purposes of this discussion, we will simplify.)
So when I am in Sketchup, the cube is Xmm by Xmm by Xmm, where X is an integer. I then export the a Collada file and subsequently load that into threejs.
Now if I look at the geometry bounding box, the values are floats, not integers.
So now assume I am putting cubes next to each other with a small space in between say 1 pixel. Because screens can't draw half pixels, sometimes I see one pixel and sometimes I see two, which causes a lack of uniformity.
I think I can resolve this satisfactorily if I can somehow get the imported model to have integer dimensions. I have full access to all parts of the model starting with Sketchup, so any point in the process is fair game.
Is it possible?
Thanks.
Clarification: My app will have two views. The view that this is concerned with is using an OrthographicCamera that is looking straight down on the pieces, so this is really a 2D view. For purposes of this question, after importing the model, it should look like a grid of squares with uniform spacing in between.
UPDATE: I would ask that you please not respond unless you can provide an actual answer. If I need help finding a way to accomplish something, I will post a new question. For this question, I am only interested in knowing if it is possible to align an imported Collada model to full pixels and if so how. At this point, this is mostly to serve my curiosity and increase my knowledge of what is and isn't possible. Thank you community for your kind help.
Now you have to learn this thing about 3D programming: numbers don't mean anything :)
In the real world 1mm, 2.13cm and 100Kg specify something that can be measured and reproduced. But for a drawing library, those numbers don't mean anything.
In a drawing library, 3D points are always represented with 3 float values.You submit your points to the library, it transforms them in 2D points (they must be viewed on a 2D surface), and finally these 2D points are passed to a rasterizer which translates floating point values into integer values (the screen has a resolution of NxM pixels, both N and M being integers) and colors the actual pixels.
Your problem simply is not a problem. A cube of 1mm really means nothing, because if you are designing an astronomic application, that object will never be seen, but if it's a microscopic one, it will even be way larger than the screen. What matters are the coordinates of the point, and the scale of the overall application.
Now back to your cubes, don't try to insert 1px in between two adjacent ones. Your cubes are defined in terms of mm, so try to choose the distance in mm appropriate to your world, and let the rasterizer do its job and translate them to pixels.
I have been informed by two co-workers that I tracked down that this is indeed impossible using normal means.

Conversion of 2D image to 3D image

i am going to develope a system which will take a 2D still image as a input & 3D image as a output.
So the steps are:
1. creating a depth map from 2D image
2. creating 3D image from depth map and original image.
Can anybody suggest me the algorithms to generate the depth map of 2D image?
As far as I know, there's no 100% bullet proof algorithm that can convert a 2D image to a 3D model. Simply said, there's not enough information inside a 2D image to fully construct something 3D. Some 3D TV sets manage to do some fake 3D from the 2D input but nothing really convincing (and sometimes wrong.)
What famous softwares do (like the one in the Kinect), is use several sources instead of one single 2D image. With pictures from different angles, you can track some particular features in the images and with geometric computations output something 3D. See http://en.wikipedia.org/wiki/3D_reconstruction_from_multiple_images for full explanation.
If you're stuck with a single image, the best known tool is the human eye... Humans can easily reconstruct 3D from a picture, by unconsciously merging several factors, such as their experience of the scene, the focus blur, "far-away fog effect", etc... So the best way for you to have a result, is to do the depth map yourself in any image editing software...
Julien

Detect the vein pattern in leaves?

My aim is to detect the vein pattern in leaves which characterize various species of plants
I have already done the following:
Original image:
After Adaptive thresholding:
However the veins aren't that clear and get distorted , Is there any way i could get a better output
EDIT:
I tried color thresholding my results are still unsatisfactory i get the following image
Please help
The fact that its a JPEG image is going to give the "block" artifacts, which in the example you posted causes most square areas around the veins to have lots of noise, so ideally work on an image that's not been through lossy compression. If that's not possible then try filtering the image to remove some of the noise.
The veins you are wanting to extract have a different colour from the background, leaf and shadow so some sort of colour based threshold might be a good idea. There was a recent S.O. question with some code that might help here.
After that some sort of adaptive normalisation would help increase the contrast before you threshold it.
[edit]
Maybe thresholding isn't an intermediate step that you want to do. I made the following by filtering to remove jpeg artifacts, doing some CMYK channel math (more cyan and black) then applying adaptive equalisation. I'm pretty sure you could then go on to produce (subpixel maybe) edge points using image gradients and non-maxima supression, and maybe use the brightness at each point and the properties of the vein structure (mostly joining at a tangent) to join the points into lines.
In the past I made good experiences with the Edge detecting algorithm difference of Gaussian. Which basically works like this:
You blur the image twice with the gaussian blurr algorithm but with differenct blur radii.
Then you calculate the difference between both images.
Pixel with same color beneath each other will creating a same blured color.
Pixel with different colors beneath each other wil reate a gradient which is depending on the blur radius. For bigger radius the gradient will stretch more far. For smaller ones it wont.
So basically this is bandpass filter. If the selected radii are to small a vain vill create 2 "parallel" lines. But since the veins of leaves are small compared with the extends of the Image you mostly find radii, where a vein results in 1 line.
Here I added th processed picture.
Steps I did on this picture:
desaturate (grayscaled)
difference of Gaussian. Here I blured the first Image with a radius of 10px and the second image with a radius of 2px. The result you can see below.
This is only a quickly created result. I would guess that by optimizing the parametes, you can even get better ones.
This sounds like something I did back in college with neural networks. The neural network stuff is a bit hard so I won't go there. Anyways, patterns are perfect candidates for the 2D Fourier transform! Here is a possible scheme:
You have training data and input data
Your data is represented as a the 2D Fourier transform
If your database is large you should run PCA on the transform results to convert a 2D spectrogram to a 1D spectrogram
Compare the hamming distance by testing the spectrum (after PCA) of 1 image with all of the images in your dataset.
You should expect ~70% recognition with such primitive methods as long as the images are of approximately the same rotation. If the images are not of the same rotation.you may have to use SIFT. To get better recognition you will need more intelligent training sets such as a Hidden Markov Model or a neural net. The truth is to getting good results for this kind of problem may be quite a lot of work.
Check out: https://theiszm.wordpress.com/2010/07/20/7-properties-of-the-2d-fourier-transform/

Recognizing distortions in a regular grid

To give you some background as to what I'm doing: I'm trying to quantitatively record variations in flow of a compressible fluid via image analysis. One way to do this is to exploit the fact that the index of refraction of the fluid is directly related to its density. If you set up some kind of image behind the flow, the distortion in the image due to refractive index changes throughout the fluid field leads you to a density gradient, which helps to characterize the flow pattern.
I have a set of routines that do this successfully with a regular 2D pattern of dots. The dot pattern is slightly distorted, and by comparing the position of the dots in the distorted image with that in the non-distorted image, I get a displacement field, which is exactly what I need. The problem with this method is resolution. The resolution is limited to the number of dots in the field, and I'm exploring methods that give me more data.
One idea I've had is to use a regular grid of horizontal and vertical lines. This image will distort the same way, but instead of getting only the displacement of a dot, I'll have the continuous distortion of a grid. It seems like there must be some standard algorithm or procedure to compare one geometric grid to another and infer some kind of displacement field. Nonetheless, I haven't found anything like this in my research.
Does anyone have some ideas that might point me in the right direction? FYI, I am not a computer scientist -- I'm an engineer. I say that only because there may be some obvious approach I'm neglecting due to coming from a different field. But I can program. I'm using MATLAB, but I can read Python, C/C++, etc.
Here are examples of the type of images I'm working with:
Regular: Distorted:
--------
I think you are looking for the Digital Image Correlation algorithm.
Here you can see a demo.
Here is a Matlab Implementation.
From Wikipedia:
Digital Image Correlation and Tracking (DIC/DDIT) is an optical method that employs tracking & image registration techniques for accurate 2D and 3D measurements of changes in images. This is often used to measure deformation (engineering), displacement, and strain, but it is widely applied in many areas of science and engineering.
Edit
Here I applied the DIC algorithm to your distorted image using Mathematica, showing the relative displacements.
Edit
You may also easily identify the maximum displacement zone:
Edit
After some work (quite a bit, frankly) you can come up to something like this, representing the "displacement field", showing clearly that you are dealing with a vortex:
(Darker and bigger arrows means more displacement (velocity))
Post me a comment if you are interested in the Mathematica code for this one. I think my code is not going to help anybody else, so I omit posting it.
I would also suggest a line tracking algorithm would work well.
Simply start at the first pixel line of the image and start following each of the vertical lines downwards (You just need to start this at the first line to get the starting points. This can be done by a simple pattern that moves orthogonally to the gradient of that line, ergo follows a line. When you reach a crossing of a horizontal line you can measure that point (in x,y coordinates) and compare it to the corresponding crossing point in your distorted image.
Since your grid is regular you know that the n'th measured crossing point on the m'th vertical black line are corresponding in both images. Then you simply compare both points by computing their distance. Do this for each line on your grid and you will get, by how far each crossing point of the grid is distorted.
This following a line algorithm is also used in basic Edge linking algorithms or the Canny Edge detector.
(All this are just theoretic ideas and I cannot provide you with an algorithm to it. But I guess it should work easily on distorted images like you have there... but maybe it is helpful for you)

Resources