Is it possible to set a specific distance of view for one plane in scene? Like different camera.far for just one object. I need sky plane to be entirely visible, not like other objects.
img
Related
My Three.js app has a static perspective camera looking on (0,0,0). How can I find the x/y coordinates in the y=0 plane of the corners of the camera's viewfield? The app covers the entire web browser, so this would correspond to the corners of the web browser. I want to render 3D models between those corners.
I want to render 3D models between those corners.
Just having the mentioned corner points is not sufficient to determine whether the user can see an object or not. The camera also has a near/far plane and also a perspective which you should take into account.
I suggest you use a different workflow and create an instance of THREE.Frustum based on the camera's projection screen matrix. The code looks like so:
const frustum = new THREE.Frustum();
const projScreenMatrix = new THREE.Matrix4();
projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
frustum.setFromProjectionMatrix( _projScreenMatrix );
You can then use methods like Frustum.intersectsObject() or Frustum.intersectsSprite() to determine whether 3D objects are in the view frustum or not.
This is actually the way WebGLRenderer performs view frustum culling.
I'm a bit confused about the differences between these matrices. I don't know if I understood how them work.
The ModelView matrix is the combination of the Model and the View Matrix where the View matrix is the one that specifies features like location and orientation of my camera while the Model matrix is the one that specifies the position's frame of the primitives that I'm going to draw.
The projection matrix specifies other features of the camera like clip space , projection method and field of view.
Is that right ?
Thanks
It's a little confusing. The View Matrix moves the entire world to be relative the the camera. A Camera matrix (the inverse of the view matrix) puts the camera in the world.
There are multiple ways to make a view matrix. While it's common to use a "lookAt" function that directly generates a view matrix. It's actually more common to put your camera in the world just like any other object. You'd have a scene hierarchy and put everything in the world, rocks, trees, houses, cars, people, camera. You then compute the world matrix for the camera which is the "camera matrix" you then take the inverse of that and you get a "view matrix". This is how pretty much all 3d engines work, Unity, Unreal, Maya, 3DSMax, etc.
The projection matrix decides things like field of view (a wide angle lens or a telephoto lens). It also helps define the aspect so that you can render to a rectangular area and it helps defined what distances in front of the camera are visible.
Here's an article on projection matrices. Here's another on camera and view matrices
I have a grid of points (object3D's using THREE.Points) in my Three.js scene, with a model sat on top of the grid, as seen below. In code the model is called default mesh and uses a merged geometry for performance reasons:
I'm trying to work out which of the points in the grid my perspective camera can see at any given point i.e. every time the camera position is update using my orbital controls.
My first idea was to use raycasting to create a ray between the camera and each point in the grid. Then I can find which rays are being intersected with the model and remove the points corresponding to those rays from a list of all the points, thus leaving me with a list of points the camera can see.
So far so good, the ray creation and intersection code is placed in the render loop (as it has to be updated whenever the camera is moved), and therefore it's horrendously slow (obviously).
gridPointsVisible = gridPoints.geometry.vertices.slice(0);
startPoint = camera.position.clone();
//create the rays from each point in the grid to the camera position
for ( var point in gridPoints.geometry.vertices) {
direction = gridPoints.geometry.vertices[point].clone();
vector.subVectors(direction, startPoint);
ray = new THREE.Raycaster(startPoint, vector.clone().normalize());
if(ray.intersectObject( defaultMesh ).length > 0){
gridPointsVisible.pop(gridPoints.geometry.vertices[point]);
}
}
In the example model shown there are around 2300 rays being created, and the mesh has 1500 faces, so the rendering takes forever.
So I 2 questions:
Is there a better of way of finding which objects the camera can see?
If not, can I speed up my raycasting/intersection checks?
Thanks in advance!
Take a look at this example of GPU picking.
You can do something similar, especially easy since you have a finite and ordered set of spheres. The idea is that you'd use a shader to calculate (probably based on position) a flat color for each sphere, and render to an off-screen render target. You'd then parse the render target data for colors, and be able to map back to your spheres. Any colors that are visible are also visible spheres. Any leftover spheres are hidden. This method should produce results faster than raycasting.
WebGLRenderTarget lets you draw to a buffer without drawing to the canvas. You can then access the render target's image buffer pixel-by-pixel (really color-by-color in RGBA).
For the mapping, you'll parse that buffer and create a list of all the unique colors you see (all non-sphere objects should be some other flat color). Then you can loop through your points--and you should know what color each sphere should be by the same color calculation as the shader used. If a point's color is in your list of found colors, then that point is visible.
To optimize this idea, you can reduce the resolution of your render target. You may lose points only visible by slivers, but you can tweak your resolution to fit your needs. Also, if you have fewer than 256 points, you can use only red values, which reduces the number of checked values to 1 in every 4 (only check R of the RGBA pixel). If you go beyond 256, include checking green values, and so on.
For realising a scrollable text container (using own bitmap fonts that are basically small sprite meshes) I am using local clipping planes.
When my text container moves the clipping planes are updated according to the global boundaries of my container.
This works perfectly except for fast movements. In this case the clipping planes are slightly delayed behind the container making the text shine through where it shouldn't.
My first thought was that the necessary code for updating the clipping planes might cause the delay.. but when I use apply this order:
1. update the text box position
2. update the clipping planes
3. render()
the delay still exists
Is the reason maybe located in the threejs framework in how the actual clipping is applied?
Here's a small code snippet that shows how I compute my upper clippin plane using two helper meshes. The one is a plane that is positioned orthogonally on my text object (red plane in the picture). The other one is a THREE.Object3D that is positioned in the middle of the upper edge for computing the right plane constant.
// get the world direction of a helper plane mesh that is located orthogonally on my text plane
var upperClippingPlaneRotationProxyMeshWordDirection = _this.upperClippingPlaneRotationProxyMesh.getWorldDirection();
// get the world position of a helper 3d object that is located in the middle of the upper edge of my text plane
var upperClippingPlanePositionProxyObjPosition = _this.upperClippingPlanePositionProxyObj.getWorldPosition();
// a plane through origin which makes it easier for computing the plane constant
var upperPlaneInOrigin = new THREE.Plane(upperClippingPlaneRotationProxyMeshWordDirection, 0);
var dist = upperPlaneInOrigin.distanceToPoint(upperClippingPlanePositionProxyObjPosition);
var upperClippingPlane = new THREE.Plane(upperClippingPlaneRotationProxyMeshWordDirection, dist*-1);
// clipping plane update
_this.myUpperClippingPlane.copy(upperClippingPlane);
picture showing the text object with clipping plane helpers
I found the reason for the delay. In my matrix updating code I only used updateMatrix() on the text object when it moves. To make sure that its child objects including the helper meshes update instantly I had to call updateMatrixWorld(true), this makes sure that the clipping planes are computed correctly
I'm quite new to three.js and lacking some basic understanding of the coordinate systems obviously.
I have an Object3D "group" that has some children (planes). I use "group" to rotate the group of planes, which works fine. Now camera can move and parent object can rotate. One can click on the planes to select them. What I want now is to let the selected plane fly into the camera.
If I just move the plane to the camera position it flys in any direction but mostly not to the camera. Certainly because "group" seems to be the "world" for the child objects. If I move a plane along the z-axis the plane move along the z-axis of the parent.
I don't understand which coordinates I need to take (or transform) to move the plane bound to "group" in front of the camera.
Basically I demoed with three.js what famo.us did, just spent some two hours on it or so. I faked the wanted effect with an additional plane that is not grouped and which I can just move to camera without transformations. The demo is available here:
http://hwg.rattat.net/famo.html.
Would be nice if somebody could tell me how to get this working. I could still live with the fake, when I would be able to place the additional plane exactly over the selected plane.
Thanks in advance,
Christian
The question of converting local coordinates to world coordinates has been addressed at THREE.js: Calculate world space position of a point on an object . There might also be helping information at how to: get the global/world position of a child object .