Mirror in scheme returns nested list w/o helper functions [duplicate] - scheme

For my programming languages class I'm supposed to write a function in Scheme to reverse a list without using the pre-made reverse function. So far what I got was
(define (reverseList lst)
(COND
((NULL? lst) '())
(ELSE (CONS (reverseList(CDR lst)) (CAR lst)))
))
The problem I'm having is that if I input a list, lets say (a b c) it gives me (((() . c) . b) . a).
How am I supposed to get a clean list without multiple sets of parenthesis and the .'s?

The problem with your implementation is that cons isn't receiving a list as its second parameter, so the answer you're building isn't a proper list, remember: a proper list is constructed by consing an element with a list, and the last list is empty.
One possible workaround for this is to use a helper function that builds the answer in an accumulator parameter, consing the elements in reverse - incidentally, this solution is tail recursive:
(define (reverse lst)
(reverse-helper lst '()))
(define (reverse-helper lst acc)
(if (null? lst)
acc
(reverse-helper (cdr lst) (cons (car lst) acc))))
(reverse '(1 2 3 4 5))
=> '(5 4 3 2 1)

You are half way there. The order of the elements in your result is correct, only the structure needs fixing.
What you want is to perform this transformation:
(((() . c) . b) . a) ; input
--------------------
(((() . c) . b) . a) () ; trans-
((() . c) . b) (a) ; for-
(() . c) (b a) ; mation
() (c b a) ; steps
--------------------
(c b a) ; result
This is easy to code. The car and cdr of the interim value are immediately available to us. At each step, the next interim-result is constructed by (cons (cdr interim-value) interim-result), and interim-result starts up as an empty list, because this is what we construct here - a list:
(define (transform-rev input)
(let step ( (interim-value input) ; initial set-up of
(interim-result '() ) ) ; the two loop variables
(if (null? interim-value)
interim-result ; return it in the end, or else
(step (car interim-value) ; go on with the next interim value
(cons ; and the next interim result
(... what goes here? ...)
interim-result )))))
interim-result serves as an accumulator. This is what's known as "accumulator technique". step represents a loop's step coded with "named-let" syntax.
So overall reverse is
(define (my-reverse lst)
(transform-rev
(reverseList lst)))
Can you tweak transform-rev so that it is able to accept the original list as an input, and thus skip the reverseList call? You only need to change the data-access parts, i.e. how you get the next interim value, and what you add into the interim result.

(define (my-reverse L)
(fold cons '() L)) ;;left fold

Step through the list and keep appending the car of the list to the recursive call.
(define (reverseList lst)
(COND
((NULL? lst) '())
(ELSE (APPEND (reverseList(CDR lst)) (LIST (CAR lst))))
))

Instead of using cons, try append
(define (reverseList lst)
(if (null? lst)
'()
(append (reverseList (cdr lst)) (list (car lst)) )
)
)
a sample run would be:
1]=> (reverseList '(a b c 1 2 + -))
>>> (- + 2 1 c b a)
car will give you just one symbol but cdr a list
Always make sure that you provide append with two lists.
If you don't give two lists to the cons it will give you dotted pair (a . b) rather than a list.
See Pairs and Lists for more information.

Related

Implementing powerset in scheme

I am trying to implement a powerset function in Scheme in two ways.
One way is using tail recursion, and I did it like this:
(define (powerset list)
(if (null? list) '(()) ;; if list is empty, its powerset is a list containing the empty list
(let ((rest (powerset (cdr list)))) ;; define "rest" as the result of the recursion over the rest of list
(append (map (lambda (x) (cons (car list) x)) rest) ;; add the first element of list to the every element of rest (which is a sublist of rest)
rest)))) ;; and append it to rest itself (as we can either use the current element (car list), or not
Which works fine.
Another way is using foldr, and this is where I face some issues.
My current implementation is as follows:
(define (powerset-fr list)
(foldr (lambda (element result) ;; This procedure gets an element (and a result);
(if (null? result) ;; if starting with the empty list, there is nothing to "fold over".
(cons '() (cons element result))
(foldr (lambda (inner-element inner-result)
(append (cons element result) inner-result))
'(())
result)))
'() ;; The result is initialized to the empty list,
list)) ;; and the procedure is being applied for every element in the first list (list1)
Which yields a poor result.
I'll try to explain shortly how did I approach this problem so far:
foldr runs over every element in the given set. For each such element, I should add some new elements to the powerset.
Which elements should these be? One new element for each existing element in the powerset, where is append the current element in list to the existing element in powerset.
This is why I thought I should use foldr twice in a nested way - one to go over all items in given list, and for each item I use foldr to go over all items in "result" (current powerset).
I faced the problem of the empty list (nothing is being added to the powerset), and thus added the "if" section (and not just foldr), but it doesn't work very well either.
I think that's it. I feel close but it is still very challenging, so every help will be welcomed.
Thanks!
The solution is simpler, there's no need to use a double foldr, try this:
(define (powerset-fr lst)
(foldr (lambda (e acc)
(append (map (lambda (x) (cons e x))
acc)
acc))
'(())
lst))
If your interpreter defines append-map or something equivalent, then the solution is a bit shorter - the results will be in a different order, but it doesn't matter:
(define (powerset-fr lst)
(foldr (lambda (e acc)
(append-map (lambda (x) (list x (cons e x)))
acc))
'(())
lst))
Either way, it works as expected:
(powerset-fr '(1 2 3))
=> '((1 2 3) (1 2) (1 3) (1) (2 3) (2) (3) ())

how to get N first element of a list

I want to make a function to get the N-th first element of a list.
For example :
>>(firsts 3 '(a b c d e))
return : (a b c)
I made that :
(define (firsts number lst)
(let ((maliste '()))
(if (equal? 0 number)
maliste
(and (set! maliste (cons (car lst) maliste)) (firsts (- number 1) (cdr lst))))))
But it doesn't work, I think I should use a let but I don't know how.
Thanks .
It's a lot simpler, remember - you should try to think functionally. In Lisp, using set! (or other operations that mutate state) is discouraged, a recursive solution is the natural approach. Assuming that the list has enough elements, this should work:
(define (firsts number lst)
; as an exercise: add an extra condition for handling the
; case when the list is empty before the number is zero
(if (equal? 0 number)
'()
(cons (car lst)
(firsts (- number 1) (cdr lst)))))

Product of squares of odd elements in list in Scheme

I wanted to write a code in Scheme that writes the square odd elements in list.For example (list 1 2 3 4 5) for this list it should write 225.For this purpose i write this code:
(define (square x)(* x x))
(define (product-of-square-of-odd-elements sequence)
(cond[(odd? (car sequence)) '() (product-of-square-of-odd-elements (cdr sequence))]
[else ((square (car sequence)) (product-of-square-of-odd-elements (cdr sequence)))]))
For run i write this (product-of-square-of-odd-elements (list 1 2 3 4 5))
and i get error like this:
car: contract violation
expected: pair?
given: '()
What should i do to make this code to run properly? Thank you for your answers.
First of all, you need to do proper formatting:
(define (square x) (* x x))
(define (product-of-square-of-odd-elements sequence)
(cond
[(odd? (car sequence))
'() (product-of-square-of-odd-elements (cdr sequence))]
[else
((square (car sequence)) (product-of-square-of-odd-elements (cdr sequence)))]))
Now there are multiple issues with your code:
You are trying to work recursively on a sequence, but you are missing a termination case: What happens when you pass '() - the empty sequence? This is the source of your error: You cannot access the first element of an empty sequence.
You need to build up your result somehow: Currently you're sending a '() into nirvana in the first branch of your cond and put a value into function call position in the second.
So let's start from scratch:
You process a sequence recursively, so you need to handle two cases:
(define (fn seq)
(if (null? seq)
;; termination case
;; recursive case
))
Let's take the recursive case first: You need to compute the square and multiply it with the rest of the squares (that you'll compute next).
(* (if (odd? (car seq)
(square (car seq))
1)
(fn (cdr seq)))
In the termination case you have no value to square. So you just use the unit value of multiplication: 1
This is not a good solution, as you can transform it into a tail recursive form and use higher order functions to abstract the recursion altogether. But I think that's enough for a start.
With transducers:
(define prod-square-odds
(let ((prod-square-odds
((compose (filtering odd?)
(mapping square)) *)))
(lambda (lst)
(foldl prod-square-odds 1 lst))))
(prod-square-odds '(1 2 3 4 5))
; ==> 225
It uses reusable transducers:
(define (mapping procedure)
(lambda (kons)
(lambda (e acc)
(kons (procedure e) acc))))
(define (filtering predicate?)
(lambda (kons)
(lambda (e acc)
(if (predicate? e)
(kons e acc)
acc))))
You can decompose the problem into, for example:
Skip the even elements
Square each element
take the product of the elements
With this, an implementation is naturally expressed using simpler functions (most of which exist in Scheme) as:
(define product-of-square-of-odd-elements (l)
(reduce * 1 (map square (skip-every-n 1 l))))
and then you implement a helper function or two, like skip-every-n.

recursive function accepts list in scheme

I'm new to Scheme and this is my very first Functional language. Implementing almost everything recursively seems to be awkward for me. Nevertheless, was able to implement functions of Factorial and Fibonacci problems having a single integer input.
However, what about when your function has an input of a list? Suppose this exercise:
FUNCTION: ret10 - extracts and returns as a list all the numbers greater than 10
that are found in a given list, guile> (ret10 ‘(x e (h n) 1 23 12 o))
OUTPUT: (23 12)
Should I have (define c(list)) as the argument of my function in this? or is there any other way?
Please help. Thanks!
Here's my derived solution based on sir Óscar López's answer below.. hope this helps others:
(define (ret10 lst)
(cond
((null? lst) '())
((and (number? (car lst)) (> (car lst) 10))
(cons (car lst)
(ret10 (cdr lst))))
(else (ret10 (cdr lst)))
)
)
This kind of problem where you receive a list as input and return another list as output has a well-known template for a solution. I'd start by recommending you take a look at The Little Schemer or How to Design Programs, either book will teach you the correct way to start thinking about the solution.
First, I'll show you how to solve a similar problem: copying a list, exactly as it comes. That'll demonstrate the general structure of the solution:
(define (copy lst)
(cond ((null? lst) ; if the input list is empty
'()) ; then return the empty list
(else ; otherwise create a new list
(cons (car lst) ; `cons` the first element
(copy (cdr lst)))))) ; and advance recursion over rest of list
Now let's see how the above relates to your problem. Clearly, the base case for the recursion will be the same. What's different is that we cons the first element with the rest of the list only if it's a number (hint: use the number? procedure) and it's greater than 10. If the condition doesn't hold, we just advance the recursion, without consing anything. Here's the general idea, fill-in the blanks:
(define (ret10 lst)
(cond (<???> <???>) ; base case: empty list
(<???> ; if the condition holds
(cons <???> ; `cons` first element
(ret10 <???>))) ; and advance recursion
(else ; otherwise
(ret10 <???>)))) ; simply advance recursion
Don't forget to test it:
(ret10 '(x e (h n) 1 23 12 o))
=> '(23 12)
As a final note: normally you'd solve this problem using the filter procedure - which takes as input a list and returns as output another list with only the elements that satisfy a given predicate. After you learn and understand how to write a solution "by hand", take a look at filter and write the solution using it, just to compare different approaches.
Solve the problem for the first element of the list and the recurse on rest of the list. Make sure you handle the termination condition (list is null?) and combine results (cons or append in the following)
(define (extract pred? list)
(if (null? list)
'()
(let ((head (car list))
(rest (cdr list)))
(cond ((pred? head) (cons head (extract pred? rest)))
((list? head) (append (extract pred? head)
(extract pred? rest)))
(else (extract pred? rest))))))
(define (ret10 list)
(extract (lambda (x) (and (number? x) (> x 10))) list))
> (ret10 '(0 11 (12 2) 13 3))
(11 12 13)

implement expand function with racket

I can't seem to figure out how to write this function. What I am trying to write is a function expand that takes a list lst as a parameter of the form '(a (2 b) (3 c)) and is evaluated to '(a b b c c c)
This looks like homework, so I'm not giving you a straight answer. Instead, I'll give you some pointers in the right direction. The most useful hint, is that you should split the problem in two procedures, one for processing the "outer" list and the other for generating the repetitions encoded in the inner sublists.
Notice that both procedures are mutually recursive (e.g., they call each other). The expand procedure recurs over the list, whereas the repeat procedure recurs over the number of repetitions. This is the general structure of the proposed solution, fill-in the blanks:
; input: lst - list to be processed
; output: list in the format requested
(define (expand lst)
(cond ((null? lst) ; if the list is null
'()) ; then return null
((not (pair? (car lst))) ; if the first element of the list is an atom
(cons <???> <???>)) ; cons the atom and advance the recursion
(else ; if the first element of the list is a list
<???>))) ; call `repeat` with the right params
; input: n - number of repetitions for the first element in the list
; lst - list, its first element is of the form (number atom)
; output: n repetitions of the atom in the first element of lst
(define (repeat n lst)
(if (zero? n) ; if the number of repetitions is zero
(expand (cdr lst)) ; continue with expand's recursion
(cons <???> ; else cons the atom in the first element and
<???>))) ; advance the recursion with one less repetition
As this was answered three years ago, I don't think that I am helping with homework. Would just like to point out that the two functions really don't need to be mutually recursive. As replicate is a fairly common function, I would propose:
(define (replicate what n)
(if (zero? n)
(list)
(cons what (replicate what (- n 1)))))
(define (my-expand xs)
(if (empty? xs)
(list)
(let ((x (first xs)))
(if (list? x)
(let ((the-number (first x))
(the-symbol (cadr x)))
(flatten (cons (replicate the-symbol the-number)
(my-expand (rest xs)))))
(cons x (my-expand (rest xs)))))))
Of course it is better to use two lists and perform the flatten at the end, something like this:
(define (my-expand xs)
(define (inner-expander xs ys)
(if (empty? xs) (flatten (reverse ys))
(let ((x (first xs)))
(if (list? x)
(let ((the-number (first x))
(the-symbol (cadr x)))
(inner-expander (rest xs) (cons (replicate the-symbol the-number) ys)))
(inner-expander (rest xs) (cons x ys))))))
(inner-expander xs (list)))

Resources