Logstash upper case mapping names - elasticsearch

I've tried to replace my old import to logstash. Everything works fine but logstash will always push the new data with lowercase property names.
Is there a way to push the data via logstash with uppercase property names into my elastic search?
...otherwise I have to rewrite some applications. :(
SAMPLE
My indexed document.
{
"ID": 1,
"NAME": "DEMO"
}
Logstash index document
{
"id": 1,
"name": "DEMO"
}
Many thanks!

Should be able to use the rename option of the mutate filter.

Related

How to create a map chart with GeoIP mapping?

I'm fairly new to ELK (7.10), and I would like to know how to create a map chart using GeoIP mapping.
I already have logs parsed and one field is "remote_ip" which I want to view on a map chart.
I've seen lots of instructions on how to do this but most are out of date and do not apply to my version which is 7.10. I'm using filebeats/logstash/kibana/elasticsearch.
Could someone show me the high level steps required to do this? Or point me to a detailed guide appropriate to my version? I have no idea how to begin.
I'm assuming those IP addresses are public so you can geocode them. Since your logs are already indexed, you now need to geocode them. Here is how to do it.
First, you need to modify your mapping to add a geo_point field, like this:
PUT your-index/_mapping
{
"properties": {
"remote_location": {
"type": "geo_point"
}
}
}
Once you've added that new field to your mapping, you can update your index to geocode the IP addresses. For that, you first need to create an ingest pipeline with the geoip processor:
PUT _ingest/pipeline/geoip
{
"description" : "Geocode IP address",
"processors" : [
{
"geoip" : {
"field" : "remote_ip",
"target_field": "remote_location"
}
}
]
}
Once this ingest pipeline is created you can use it to update your index using the _update_by_query endpoint like this:
POST your-index/_update_by_query?pipeline=geoip
Once the update is over, you can go into Kibana, create an index pattern and then go to Analytics > Maps and create your map.

Elastich search rollover index with ingest pipeline

I have a data stream built out in elastic search through Kibana. I have all the right mappings, index patterns and settings. I created the index that matched the correct index pattern. All good so far.
I have a ingest pipeline that I have created to ensure that any documents that come to ES get a #timestamp field before getting ingested into the index.
PUT _ingest/pipeline/my_timestamp_pipeline
{
"description": "Adds a field to a document with the time of ingestion",
"processors": [
{
"set": {
"field": "#timestamp",
"value": "{{_ingest.timestamp}}"
}
}
]
}
I apply the above pipeline to the index as follows
PUT /<<index name>>/_settings
{
"settings": {
"default_pipeline": "my_timestamp_pipeline"
}
}
Everytime I do a manual rollover the ingest pipeline changes get disabled on the index and my documents fail to get indexed due to a missing #timestamp field, which is required as part of a data stream.
Do manual rollovers NOT support ingest pipelines and I have to manually apply the pipeline everytime I do a manual rollover?
I checked that you can pass properties during a manual rollover of an index but not for a rollover of a data stream. Am I missing anything obvious here?
Any help is appreciated
Thanks
Nick

How to extract and visualize values from a log entry in OpenShift EFK stack

I have an OKD cluster setup with EFK stack for logging, as described here. I have never worked with one of the components before.
One deployment logs requests that contain a specific value that I'm interested in. I would like to extract just this value and visualize it with an area map in Kibana that shows the amount of requests and where they come from.
The content of the message field basically looks like this:
[fooServiceClient#doStuff] {"somekey":"somevalue", "multivalue-key": {"plz":"12345", "foo": "bar"}, "someotherkey":"someothervalue"}
This plz is a German zip code, which I would like to visualize as described.
My problem here is that I have no idea how to extract this value.
A nice first success would be if I could find it with a regexp, but Kibana doesn't seem to work the way I think it does. Following its docs, I expect this /\"plz\":\"[0-9]{5}\"/ to deliver me the result, but I get 0 hits (time interval is set correctly). Even if this regexp matches, I would only find the log entry where this is contained and not just the specifc value. How do I go on here?
I guess I also need an external geocoding service, but at which point would I include it? Or does Kibana itself know how to map zip codes to geometries?
A beginner-friendly step-by-step guide would be perfect, but I could settle for some hints that guide me there.
It would be possible to parse the message field as the document gets indexed into ES, using an ingest pipeline with grok processor.
First, create the ingest pipeline like this:
PUT _ingest/pipeline/parse-plz
{
"processors": [
{
"grok": {
"field": "message",
"patterns": [
"%{POSINT:plz}"
]
}
}
]
}
Then, when you index your data, you simply reference that pipeline:
PUT plz/_doc/1?pipeline=parse-plz
{
"message": """[fooServiceClient#doStuff] {"somekey":"somevalue", "multivalue-key": {"plz":"12345", "foo": "bar"}, "someotherkey":"someothervalue"}"""
}
And you will end up with a document like the one below, which now has a field called plz with the 12345 value in it:
{
"message": """[fooServiceClient#doStuff] {"somekey":"somevalue", "multivalue-key": {"plz":"12345", "foo": "bar"}, "someotherkey":"someothervalue"}""",
"plz": "12345"
}
When indexing your document from Fluentd, you can specify a pipeline to be used in the configuration. If you can't or don't want to modify your Fluentd configuration, you can also define a default pipeline for your index that will kick in every time a new document is indexed. Simply run this on your index and you won't need to specify ?pipeline=parse-plz when indexing documents:
PUT index/_settings
{
"index.default_pipeline": "parse-plz"
}
If you have several indexes, a better approach might be to define an index template instead, so that whenever a new index called project.foo-something is created, the settings are going to be applied:
PUT _template/project-indexes
{
"index_patterns": ["project.foo*"],
"settings": {
"index.default_pipeline": "parse-plz"
}
}
Now, in order to map that PLZ on a map, you'll first need to find a data set that provides you with geolocations for each PLZ.
You can then add a second processor in your pipeline in order to do the PLZ/ZIP to lat,lon mapping:
PUT _ingest/pipeline/parse-plz
{
"processors": [
{
"grok": {
"field": "message",
"patterns": [
"%{POSINT:plz}"
]
}
},
{
"script": {
"lang": "painless",
"source": "ctx.location = params[ctx.plz];",
"params": {
"12345": {"lat": 42.36, "lon": 7.33}
}
}
}
]
}
Ultimately, your document will look like this and you'll be able to leverage the location field in a Kibana visualization:
{
"message": """[fooServiceClient#doStuff] {"somekey":"somevalue", "multivalue-key": {"plz":"12345", "foo": "bar"}, "someotherkey":"someothervalue"}""",
"plz": "12345",
"location": {
"lat": 42.36,
"lon": 7.33
}
}
So to sum it all up, it all boils down to only two things:
Create an ingest pipeline to parse documents as they get indexed
Create an index template for all project* indexes whose settings include the pipeline created in step 1

Specifying Field Types Indexing from Logstash to Elasticsearch

I have successfully ingested data using the XML filter plugin from Logstash to Elasticsearch, however all the field types are of the type "text."
Is there a way to manually or automatically specify the correct type?
I found the following technique good for my use:
Logstash would filter the data and change a field from the default - text to whatever form you want. The documentation would be found here. The example given in the documentation is:
filter {
mutate {
convert => { "fieldname" => "integer" }
}
}
This you add in the /etc/logstash/conf.d/02-... file in the body part. I believe the downside of this practice is that from my understanding it is less recommended to alter data entering the ES.
After you do this you will probably get the this problem. If you have this problem and your DB is a test DB that you can erase all old data just DELETE the index until now that there would not be a conflict (for example you have a field that was until now text and now it is received as date there would be a conflict between old and new data). If you can't just erase the old data then read into the answer in the link I linked.
What you want to do is specify a mapping template.
PUT _template/template_1
{
"index_patterns": ["te*", "bar*"],
"settings": {
"number_of_shards": 1
},
"mappings": {
"type1": {
"_source": {
"enabled": false
},
"properties": {
"host_name": {
"type": "keyword"
},
"created_at": {
"type": "date",
"format": "EEE MMM dd HH:mm:ss Z YYYY"
}
}
}
}
}
Change the settings to match your needs such as listing the properties to map what you want them to map to.
Setting index_patterns is especially important because it tells elastic how to apply this template. You can set an array of index patterns and can use * as appropriate for wildcards. i.e logstash's default is to rotate by date. They will look like logstash-2018.04.23 so your pattern could be logstash-* and any that match the pattern will receive the template.
If you want to match based on some pattern, then you can use dynamic templates.
Edit: Adding a little update here, if you want logstash to apply the template for you, here is a link to the settings you'll want to be aware of.

Elasticsearch to wildcard search email addresses

I'm trying to use elasticsearch for a project I'm working on. I was wondering if someone could help steer me in the right direction. I'm using an index with 100+ million records.
I need to be able to search with a wildcard query like the following:
b*g#gmail.com
b*g#*.com
*gus#gmail.com
br*gu*#gmail.com
*g*#*
When I try using Wildcard and other searches, I don't get completely expected results.
What type of search with elasticsearch should I look into implementing? Is ElasticSearch even the right tool to be using? The source I'm pulling this out of is Mysql, so if not I may consider using Sphinx or Solr.
I assume that you have tried out the wildcard query as described here.
However, it has very different behaviour if your email is analyzed versus not analyzed. I would suggest you delete your index and change your mapping. e.g.
PUT /emails
{
"mappings": {
"email": {
"properties": {
"email": {
"type": "string",
"index": "not_analyzed"
}
}
}
}
}
Once you have this, you can just do the normal wildcard query or query_string. e.g.
GET emails/_search
{
"query": {
"wildcard": {
"email": {
"value": "s*com"
}
}
}
}
As an aside, when you just index email without setting it as not_analyzed, the default mapping actually splits up the email prefix from the domain and so that's why you don't get results for when you do s*#gmail.com. You would still get results for s* or *gmail.com but for your case, using not_analyzed works correctly. If you want to support case insensitivity, then you might want to look at a custom analyzer that uses the uax_url_email tokenizer as described here.

Resources