TensorFlow: Reading images in queue without shuffling - image

I have a training set of 614 images which have already been shuffled. I want to read the images in order in batches of 5. Because my labels are arranged in the same order, any shuffling of the images when being read into the batch will result in incorrect labelling.
These are my functions to read and add the images to the batch:
# To add files from queue to a batch:
def add_to_batch(image):
print('Adding to batch')
image_batch = tf.train.batch([image],batch_size=5,num_threads=1,capacity=614)
# Add to summary
tf.image_summary('images',image_batch,max_images=30)
return image_batch
# To read files in queue and process:
def get_batch():
# Create filename queue of images to read
filenames = [('/media/jessica/Jessica/TensorFlow/StreetView/training/original/train_%d.png' % i) for i in range(1,614)]
filename_queue = tf.train.string_input_producer(filenames,shuffle=False,capacity=614)
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
# Read and process image
# Image is 500 x 275:
my_image = tf.image.decode_png(value)
my_image_float = tf.cast(my_image,tf.float32)
my_image_float = tf.reshape(my_image_float,[275,500,4])
return add_to_batch(my_image_float)
This is my function to perform the prediction:
def inference(x):
< Perform convolution, pooling etc.>
return y_conv
This is my function to calculate loss and perform optimisation:
def train_step(y_label,y_conv):
""" Calculate loss """
# Cross-entropy
loss = -tf.reduce_sum(y_label*tf.log(y_conv + 1e-9))
# Add to summary
tf.scalar_summary('loss',loss)
""" Optimisation """
opt = tf.train.AdamOptimizer().minimize(loss)
return loss
This is my main function:
def main ():
# Training
images = get_batch()
y_conv = inference(images)
loss = train_step(y_label,y_conv)
# To write and merge summaries
writer = tf.train.SummaryWriter('/media/jessica/Jessica/TensorFlow/StreetView/SummaryLogs/log_5', graph_def=sess.graph_def)
merged = tf.merge_all_summaries()
""" Run session """
sess.run(tf.initialize_all_variables())
tf.train.start_queue_runners(sess=sess)
print "Running..."
for step in range(5):
# y_1 = <get the correct labels here>
# Train
loss_value = sess.run(train_step,feed_dict={y_label:y_1})
print "Step %d, Loss %g"%(step,loss_value)
# Save summary
summary_str = sess.run(merged,feed_dict={y_label:y_1})
writer.add_summary(summary_str,step)
print('Finished')
if __name__ == '__main__':
main()
When I check my image_summary the images do not seem to be in sequence. Or rather, what is happening is:
Images 1-5: discarded, Images 6-10: read, Images 11-15: discarded, Images 16-20: read etc.
So it looks like I am getting my batches twice, throwing away the first one and using the second one? I have tried a few remedies but nothing seems to work. I feel like I am understanding something fundamentally wrong about calling images = get_batch() and sess.run().

Your batch operation is a FIFOQueue, so every time you use it's output, it advances the state.
Your first session.run call uses the images 1-5 in the computation of train_step, your second session.run asks for the computation of image_summary which pulls images 5-6 and uses them in the visualization.
If you want to visualize things without affecting the state of input, it helps to cache queue values in variables and define your summaries with variables as inputs rather than depending on live queue.
(image_batch_live,) = tf.train.batch([image],batch_size=5,num_threads=1,capacity=614)
image_batch = tf.Variable(
tf.zeros((batch_size, image_size, image_size, color_channels)),
trainable=False,
name="input_values_cached")
advance_batch = tf.assign(image_batch, image_batch_live)
So now your image_batch is a static value which you can use both for computing loss and visualization. Between steps you would call sess.run(advance_batch) to advance the queue.
Minor wrinkle with this approach -- default saver will save your image_batch variable to checkpoint. If you ever change your batch-size, then your checkpoint restore will fail with dimension mismatch. To work-around you would need to specify the list of variables to restore manually, and run initializers for the rest.

Related

How can I export layered drawings from drawio to create "animated" slides in beamer?

When preparing lectures, or conference presentations with beamer, I usually use layered drawings. Then for graphics included in consecutive slides ("frames" in beamer), I simply use different sets of layers.
For graphics created in IPE, I have created a dedicated expallviews.lua script.
Unfortunately, for graphics created with diagrams.net locally run as drawio-desktop, no such automated export of various layers exists. The only way is to manually select the visible layers in GUI and then export consecutive drawings to a set of PDF files.
Is there a more convenient method to solve that problem?
The described problem has been reported in issues 405 and 737 in the drawio-desktop repository.
After reviewing those issues, I have found a method based on automated (instead of a manual via GUI) changing the visibility of layers and exporting such drawings to the set of PDF files. The proposed method is described in the comment to the issue 405. It uses a simple Python script:
#!/usr/bin/python3
"""
This script modifies the visibility of layers in the XML
file with diagram generated by drawio.
It works around the problem of lack of a possibility to export
only the selected layers from the CLI version of drawio.
Written by Wojciech M. Zabolotny 6.10.2022
(wzab01<at>gmail.com or wojciech.zabolotny<at>pw.edu.pl)
The code is published under LGPL V2 license
"""
from lxml import etree as let
import xml.etree.ElementTree as et
import xml.parsers.expat as pe
from io import StringIO
import os
import sys
import shutil
import zlib
import argparse
PARSER = argparse.ArgumentParser()
PARSER.add_argument("--layers", help="Selected layers, \"all\", comma separated list of integers or integer ranges like \"0-3,6,7\"", default="all")
PARSER.add_argument("--layer_prefix", help="Layer name prefix", default="Layer_")
PARSER.add_argument("--outfile", help="Output file", default="output.drawio")
PARSER.add_argument("--infile", help="Input file", default="input.drawio")
ARGS = PARSER.parse_args()
INFILENAME = ARGS.infile
OUTFILENAME = ARGS.outfile
# Find all elements with 'value' starting with the layer prefix.
# Return tuples with the element and the rest of 'value' after the prefix.
def find_layers(el_start):
res = []
for el in el_start:
val = el.get('value')
if val is not None:
if val.find(ARGS.layer_prefix) == 0:
# This is a layer element. Add it, and its name
# after the prefix to the list.
res.append((el,val[len(ARGS.layer_prefix):]))
continue
# If it is not a layer element, scan its children
res.extend(find_layers(el))
return res
# Analyse the list of visible layers, and create the list
# of layers that should be visible. Customize this part
# if you want a more sophisticate method for selection
# of layers.
# Now only "all", comma separated list of integers
# or ranges of integers are supported.
def build_visible_list(layers):
if layers == "all":
return layers
res = []
for lay in layers.split(','):
# Is it a range?
s = lay.find("-")
if s > 0:
# This is a range
first = int(lay[:s])
last = int(lay[(s+1):])
res.extend(range(first,last+1))
else:
res.append(int(lay))
return res
def is_visible(layer_tuple,visible_list):
if visible_list == "all":
return True
if int(layer_tuple[1]) in visible_list:
return True
try:
EL_ROOT = et.fromstring(open(INFILENAME,"r").read())
except et.ParseError as perr:
# Handle the parsing error
ROW, COL = perr.position
print(
"Parsing error "
+ str(perr.code)
+ "("
+ pe.ErrorString(perr.code)
+ ") in column "
+ str(COL)
+ " of the line "
+ str(ROW)
+ " of the file "
+ INFILENAME
)
sys.exit(1)
visible_list = build_visible_list(ARGS.layers)
layers = find_layers(EL_ROOT)
for layer_tuple in layers:
if is_visible(layer_tuple,visible_list):
print("set "+layer_tuple[1]+" to visible")
layer_tuple[0].attrib['visible']="1"
else:
print("set "+layer_tuple[1]+" to invisible")
layer_tuple[0].attrib['visible']="0"
# Now write the modified file
t=et.ElementTree(EL_ROOT)
with open(OUTFILENAME, 'w') as f:
t.write(f, encoding='unicode')
The maintained version of that script, together with a demonstration of its use is also available in my github repository.

Asyncio with multiprocessing : Producers-Consumers model

I am trying retrieve stock prices and process the prices them as they come. I am a beginner with concurrency but I thought this set up seems suited to an asyncio producers-consumers model in which each producers retrieve a stock price, and pass it to the consumers vial a queue. Now the consumers have do the stock price processing in parallel (multiprocessing) since the work is CPU intensive. Therefore I would have multiple consumers already working while not all the producers are finished retrieving data. In addition, I would like to implement a step in which, if the consumer finds that the stock price it's working on is invalid , we spawn a new consumer job for that stock.
So far, i have the following toy code that sort of gets me there, but has issues with my process_data function (the consumer).
from concurrent.futures import ProcessPoolExecutor
import asyncio
import random
import time
random.seed(444)
#producers
async def retrieve_data(ticker, q):
'''
Pretend we're using aiohttp to retrieve stock prices from a URL
Place a tuple of stock ticker and price into asyn queue as it becomes available
'''
start = time.perf_counter() # start timer
await asyncio.sleep(random.randint(4, 8)) # pretend we're calling some URL
price = random.randint(1, 100) # pretend this is the price we retrieved
print(f'{ticker} : {price} retrieved in {time.perf_counter() - start:0.1f} seconds')
await q.put((ticker, price)) # place the price into the asyncio queue
#consumers
async def process_data(q):
while True:
data = await q.get()
print(f"processing: {data}")
with ProcessPoolExecutor() as executor:
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(executor, data_processor, data)
#if output of data_processing failed, send ticker back to queue to retrieve data again
if not result[2]:
print(f'{result[0]} data invalid. Retrieving again...')
await retrieve_data(result[0], q) # add a new task
q.task_done() # end this task
else:
q.task_done() # so that q.join() knows when the task is done
async def main(tickers):
q = asyncio.Queue()
producers = [asyncio.create_task(retrieve_data(ticker, q)) for ticker in tickers]
consumers = [asyncio.create_task(process_data(q))]
await asyncio.gather(*producers)
await q.join() # Implicitly awaits consumers, too. blocks until all items in the queue have been received and processed
for c in consumers:
c.cancel() #cancel the consumer tasks, which would otherwise hang up and wait endlessly for additional queue items to appear
'''
RUN IN JUPYTER NOTEBOOK
'''
start = time.perf_counter()
tickers = ['AAPL', 'AMZN', 'TSLA', 'C', 'F']
await main(tickers)
print(f'total elapsed time: {time.perf_counter() - start:0.2f}')
'''
RUN IN TERMINAL
'''
# if __name__ == "__main__":
# start = time.perf_counter()
# tickers = ['AAPL', 'AMZN', 'TSLA', 'C', 'F']
# asyncio.run(main(tickers))
# print(f'total elapsed time: {time.perf_counter() - start:0.2f}')
The data_processor() function below, called by process_data() above needs to be in a different cell in Jupyter notebook, or a separate module (from what I understand, to avoid a PicklingError)
from multiprocessing import current_process
def data_processor(data):
ticker = data[0]
price = data[1]
print(f'Started {ticker} - {current_process().name}')
start = time.perf_counter() # start time counter
time.sleep(random.randint(4, 5)) # mimic some random processing time
# pretend we're processing the price. Let the processing outcome be invalid if the price is an odd number
if price % 2==0:
is_valid = True
else:
is_valid = False
print(f"{ticker}'s price {price} validity: --{is_valid}--"
f' Elapsed time: {time.perf_counter() - start:0.2f} seconds')
return (ticker, price, is_valid)
THE ISSUES
Instead of using python's multiprocessing module, i used concurrent.futures' ProcessPoolExecutor, which I read is compatible with asyncio (What kind of problems (if any) would there be combining asyncio with multiprocessing?). But it seems that I have to choose between retrieving the output (result) of the function called by the executor and being able to run several subprocesses in parallel. With the construct below, the subprocesses run sequentially, not in parallel.
with ProcessPoolExecutor() as executor:
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(executor, data_processor, data)
Removing result = await in front of loop.run_in_executor(executor, data_processor, data) allows to run several consumers in parallel, but then I can't collect their results from the parent process. I need the await for that. And then of course the remaining of the code block will fail.
How can I have these subprocesses run in parallel and provide the output? Perhaps it needs a different construct or something else than the producers-consumers model
the part of the code that requests invalid stock prices to be retrieved again works (provided I can get the result from above), but it is ran in the subprocess that calls it and blocks new consumers from being created until the request is fulfilled. Is there a way to address this?
#if output of data_processing failed, send ticker back to queue to retrieve data again
if not result[2]:
print(f'{result[0]} data invalid. Retrieving again...')
await retrieve_data(result[0], q) # add a new task
q.task_done() # end this task
else:
q.task_done() # so that q.join() knows when the task is done
But it seems that I have to choose between retrieving the output (result) of the function called by the executor and being able to run several subprocesses in parallel.
Luckily this is not the case, you can also use asyncio.gather() to wait for multiple items at once. But you obtain data items one by one from the queue, so you don't have a batch of items to process. The simplest solution is to just start multiple consumers. Replace
# the single-element list looks suspicious anyway
consumers = [asyncio.create_task(process_data(q))]
with:
# now we have an actual list
consumers = [asyncio.create_task(process_data(q)) for _ in range(16)]
Each consumer will wait for an individual task to finish, but that's ok because you'll have a whole pool of them working in parallel, which is exactly what you wanted.
Also, you might want to make executor a global variable and not use with, so that the process pool is shared by all consumers and lasts as long as the program. That way consumers will reuse the worker processes already spawned instead of having to spawn a new process for each job received from the queue. (That's the whole point of having a process "pool".) In that case you probably want to add executor.shutdown() at the point in the program where you don't need the executor anymore.

How to use entrezpy and Biopython Entrez libraries to access ClinVar data from genomic position of variant

[Disclaimer: I have published this question 3 weeks ago in biostars, with no answers yet. I really would like to get some ideas/discussion to find a solution, so I post also here.
biostars post link: https://www.biostars.org/p/447413/]
For one of my projects of my PhD, I would like to access all variants, found in ClinVar db, that are in the same genomic position as the variant in each row of the input GSVar file. The language constraint is Python.
Up to now I have used entrezpy module: entrezpy.esearch.esearcher. Please see more for entrezpy at: https://entrezpy.readthedocs.io/en/master/
From the entrezpy docs I have followed this guide to access UIDs using the genomic position of a variant: https://entrezpy.readthedocs.io/en/master/tutorials/esearch/esearch_uids.html in code:
# first get UIDs for clinvar records of the same position
# credits: credits: https://entrezpy.readthedocs.io/en/master/tutorials/esearch/esearch_uids.html
chr = variants["chr"].split("chr")[1]
start, end = str(variants["start"]), str(variants["end"])
es = entrezpy.esearch.esearcher.Esearcher('esearcher', self.entrez_email)
genomic_pos = chr + "[chr]" + " AND " + start + ":" + end # + "[chrpos37]"
entrez_query = es.inquire(
{'db': 'clinvar',
'term': genomic_pos,
'retmax': 100000,
'retstart': 0,
'rettype': 'uilist'}) # 'usehistory': False
entrez_uids = entrez_query.get_result().uids
Then I have used Entrez from BioPython to get the available ClinVar records:
# process each VariationArchive of each UID
handle = Entrez.efetch(db='clinvar', id=current_entrez_uids, rettype='vcv')
clinvar_records = {}
tree = ET.parse(handle)
root = tree.getroot()
This approach is working. However, I have two main drawbacks:
entrezpy fulls up my log file recording all interaction with Entrez making the log file too big to be read by the hospital collaborator, who is variant curator.
entrezpy function, entrez_query.get_result().uids, will return all UIDs retrieved so far from all the requests (say a request for each variant in GSvar), thus this space inefficient retrieval. That is the entrez_uids list will quickly grow a lot as I process all variants from a GSVar file. The simple solution that I have implenented is to check which UIDs are new from the current request and then keep only those for Entrez.fetch(). However, I still need to keep all seen UIDs, from previous variants in order to be able to know which is the new UIDs. I do this in code by:
# first snippet's first lines go here
entrez_uids = entrez_query.get_result().uids
current_entrez_uids = [uid for uid in entrez_uids if uid not in self.all_entrez_uids_gsvar_file]
self.all_entrez_uids_gsvar_file += current_entrez_uids
Does anyone have suggestion(s) on how to address these two presented drawbacks?

Dataloader on top of protobuf file using pytorch's torch.utils.data.IterableDataset

I am building a RNN network using pytorch.
The data is stored in various protobuf file.
Each record in protobuf represents one training example with multiple timestamp.
As this is very large dataset, reading the whole data in memory or random read by extending torch.utils.data.Dataset class isn't feasible.
As per the docs using the torch.utils.data.IterableDataset is recommended.
DataLoader on top of IterableDataset would be able to achieve parallelism
However I am not able to find an implementation of this on custom data, docs only talk about a simple range iterator.
import math
import stream
from src import record_pb2
import torch
class MyIterableDataset(torch.utils.data.IterableDataset):
def __init__(self, pb_file):
self.pb_file = pb_file
self.start = 0
self.end = 0
# One time read of the data to get the total count of records in the dataset
with stream.open(self.pb_file, 'rb') as data_stream:
for _ in data_stream:
self.end += 1
def __iter__(self):
worker_info = torch.utils.data.get_worker_info()
if worker_info is None: # Single-process data loading, return the full iterator
iter_start = self.start
iter_end = self.end
else:
# in a worker process, split the workload
per_worker = int(math.ceil((self.end - self.start))/float(worker_info.num_workers))
worker_id = worker_info.id
iter_start = self.start + worker_id * per_worker
iter_end = min(iter_start + per_worker, self.end)
data_stream = stream.open(self.pb_file, 'rb')
# Block to skip the streaming data till the iter start for the current worker process
i = 0
for _ in data_stream:
i += 1
if i >= iter_start:
break
return iter(self.pb_stream)
I am expecting a mechanism by which a parallel data feeder could be designed on top of a large streaming data (protobuf)
The __iter__ method of the IterableDataset would yield your data samples one at a time. In a parallel setup, you have to choose the samples based on worker_id. And with respect to the DataLoader using this dataset, shuffle and sampler options would not work, as an IterableDataset is not going to have any indices. In other words, have your dataset yield one sample at a time and the data loader will take care of loading them. Does this answer?

Streaming to HBase with pyspark

There is a fair amount of info online about bulk loading to HBase with Spark streaming using Scala (these two were particularly useful) and some info for Java, but there seems to be a lack of info for doing it with PySpark. So my questions are:
How can data be bulk loaded into HBase using PySpark?
Most examples in any language only show a single column per row being upserted. How can I upsert multiple columns per row?
The code I currently have is as follows:
if __name__ == "__main__":
context = SparkContext(appName="PythonHBaseBulkLoader")
streamingContext = StreamingContext(context, 5)
stream = streamingContext.textFileStream("file:///test/input");
stream.foreachRDD(bulk_load)
streamingContext.start()
streamingContext.awaitTermination()
What I need help with is the bulk load function
def bulk_load(rdd):
#???
I've made some progress previously, with many and various errors (as documented here and here)
So after much trial and error, I present here the best I have come up with. It works well, and successfully bulk loads data (using Puts or HFiles) I am perfectly willing to believe that it is not the best method, so any comments/other answers are welcome. This assume you're using a CSV for your data.
Bulk loading with Puts
By far the easiest way to bulk load, this simply creates a Put request for each cell in the CSV and queues them up to HBase.
def bulk_load(rdd):
#Your configuration will likely be different. Insert your own quorum and parent node and table name
conf = {"hbase.zookeeper.qourum": "localhost:2181",\
"zookeeper.znode.parent": "/hbase-unsecure",\
"hbase.mapred.outputtable": "Test",\
"mapreduce.outputformat.class": "org.apache.hadoop.hbase.mapreduce.TableOutputFormat",\
"mapreduce.job.output.key.class": "org.apache.hadoop.hbase.io.ImmutableBytesWritable",\
"mapreduce.job.output.value.class": "org.apache.hadoop.io.Writable"}
keyConv = "org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter"
valueConv = "org.apache.spark.examples.pythonconverters.StringListToPutConverter"
load_rdd = rdd.flatMap(lambda line: line.split("\n"))\#Split the input into individual lines
.flatMap(csv_to_key_value)#Convert the CSV line to key value pairs
load_rdd.saveAsNewAPIHadoopDataset(conf=conf,keyConverter=keyConv,valueConverter=valueConv)
The function csv_to_key_value is where the magic happens:
def csv_to_key_value(row):
cols = row.split(",")#Split on commas.
#Each cell is a tuple of (key, [key, column-family, column-descriptor, value])
#Works well for n>=1 columns
result = ((cols[0], [cols[0], "f1", "c1", cols[1]]),
(cols[0], [cols[0], "f2", "c2", cols[2]]),
(cols[0], [cols[0], "f3", "c3", cols[3]]))
return result
The value converter we defined earlier will convert these tuples into HBase Puts
Bulk loading with HFiles
Bulk loading with HFiles is more efficient: rather than a Put request for each cell, an HFile is written directly and the RegionServer is simply told to point to the new HFile. This will use Py4J, so before the Python code we have to write a small Java program:
import py4j.GatewayServer;
import org.apache.hadoop.hbase.*;
public class GatewayApplication {
public static void main(String[] args)
{
GatewayApplication app = new GatewayApplication();
GatewayServer server = new GatewayServer(app);
server.start();
}
}
Compile this, and run it. Leave it running as long as your streaming is happening. Now update bulk_load as follows:
def bulk_load(rdd):
#The output class changes, everything else stays
conf = {"hbase.zookeeper.qourum": "localhost:2181",\
"zookeeper.znode.parent": "/hbase-unsecure",\
"hbase.mapred.outputtable": "Test",\
"mapreduce.outputformat.class": "org.apache.hadoop.hbase.mapreduce.HFileOutputFormat2",\
"mapreduce.job.output.key.class": "org.apache.hadoop.hbase.io.ImmutableBytesWritable",\
"mapreduce.job.output.value.class": "org.apache.hadoop.io.Writable"}#"org.apache.hadoop.hbase.client.Put"}
keyConv = "org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter"
valueConv = "org.apache.spark.examples.pythonconverters.StringListToPutConverter"
load_rdd = rdd.flatMap(lambda line: line.split("\n"))\
.flatMap(csv_to_key_value)\
.sortByKey(True)
#Don't process empty RDDs
if not load_rdd.isEmpty():
#saveAsNewAPIHadoopDataset changes to saveAsNewAPIHadoopFile
load_rdd.saveAsNewAPIHadoopFile("file:///tmp/hfiles" + startTime,
"org.apache.hadoop.hbase.mapreduce.HFileOutputFormat2",
conf=conf,
keyConverter=keyConv,
valueConverter=valueConv)
#The file has now been written, but HBase doesn't know about it
#Get a link to Py4J
gateway = JavaGateway()
#Convert conf to a fully fledged Configuration type
config = dict_to_conf(conf)
#Set up our HTable
htable = gateway.jvm.org.apache.hadoop.hbase.client.HTable(config, "Test")
#Set up our path
path = gateway.jvm.org.apache.hadoop.fs.Path("/tmp/hfiles" + startTime)
#Get a bulk loader
loader = gateway.jvm.org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles(config)
#Load the HFile
loader.doBulkLoad(path, htable)
else:
print("Nothing to process")
Finally, the fairly straightforward dict_to_conf:
def dict_to_conf(conf):
gateway = JavaGateway()
config = gateway.jvm.org.apache.hadoop.conf.Configuration()
keys = conf.keys()
vals = conf.values()
for i in range(len(keys)):
config.set(keys[i], vals[i])
return config
As you can see, bulk loading with HFiles is more complex than using Puts, but depending on your data load it is probably worth it since once you get it working it's not that difficult.
One last note on something that caught me off guard: HFiles expect the data they receive to be written in lexical order. This is not always guaranteed to be true, especially since "10" < "9". If you have designed your key to be unique, then this can be fixed easily:
load_rdd = rdd.flatMap(lambda line: line.split("\n"))\
.flatMap(csv_to_key_value)\
.sortByKey(True)#Sort in ascending order

Resources