My algorithm is too slow - algorithm

I have an algorithm that for an integer x and a starting integer i such that 1 < i < x the next value of i is computed by i = floor(x / i) + (x mod i). This continues until we reach an i that we've already seen.
In JavaScript (though this question is language agnostic):
function f(x, i) {
var map = {};
while(!map[i]) {
map[i] = true;
i = Math.floor(x / i) + (x % i); // ~~(x / i) is a faster way of flooring
}
return i;
}
I can prove that we will eventually reach an i we've already seen, but I'm wondering:
Is there is a more efficient way of computing the next i?
(More importantly) Is there is a way to compute the nth i without running through the loop n times?
Just to clarify - I know there are faster ways than using JS hash maps for that check, and that flooring can be replaced by integer division in other languages. I have made both of those optimizations, but I left them out to try to make the code easier to understand. Sorry for any confusion.
Thanks in advance!

I think the main time eater - map. It uses some hashing function (probably not simple). If i range is limited by reasonable value, it would better to use bit/boolean array (or Javascript analog)
The second - two divisions. Are floats and integers distinct in Javascript? It is possible to make one integer division, finding modulo with multiplication and subtraction (due to fundamental properties of integer division/modulo definition):
p = x \\ i
i = p + (x - p * i)
or
i = x - (x \\ i) * (i - 1)
Note: integer division in most processors calculates both quotient and residue in the same time
mov eax, 17 //dividend
mov ecx, 3 //divisor
xor edx, edx //zero
div ecx //edx:eax pair divide by ecx
//now eax contains quotient 5, edx contains residue (modulus) 2
If you can use asm in C, or have some functions like delphi DivMod, you can make calculations some faster.

Related

Integer division without using the / or * operator

I am going through an algorithms and datastructures textbook and came accross this question:
1-28. Write a function to perform integer division without using
either the / or * operators. Find a fast way to do it.
How can we come up with a fast way to do it?
I like this solution: https://stackoverflow.com/a/34506599/1008519, but I find it somewhat hard to reason about (especially the |-part). This solution makes a little more sense in my head:
var divide = function (dividend, divisor) {
// Handle 0 divisor
if (divisor === 0) {
return NaN;
}
// Handle negative numbers
var isNegative = false;
if (dividend < 0) {
// Change sign
dividend = ~dividend+1;
isNegative = !isNegative;
}
if (divisor < 0) {
// Change sign
divisor = ~divisor+1;
isNegative = !isNegative;
}
/**
* Main algorithm
*/
var result = 1;
var denominator = divisor;
// Double denominator value with bitwise shift until bigger than dividend
while (dividend > denominator) {
denominator <<= 1;
result <<= 1;
}
// Subtract divisor value until denominator is smaller than dividend
while (denominator > dividend) {
denominator -= divisor;
result -= 1;
}
// If one of dividend or divisor was negative, change sign of result
if (isNegative) {
result = ~result+1;
}
return result;
}
We initialize our result to 1 (since we are going to double our denominator until it is bigger than the dividend)
Double our denominator (with bitwise shifts) until it is bigger than the dividend
Since we know our denominator is bigger than our dividend, we can minus our divisor until it is less than our dividend
Return result since denominator is now as close to the result as possible using the divisor
Here are some test runs:
console.log(divide(-16, 3)); // -5
console.log(divide(16, 3)); // 5
console.log(divide(16, 33)); // 0
console.log(divide(16, 0)); // NaN
console.log(divide(384, 15)); // 25
Here is a gist of the solution: https://gist.github.com/mlunoe/e34f14cff4d5c57dd90a5626266c4130
Typically, when an algorithms textbook says fast they mean in terms of computational complexity. That is, the number of operations per bit of input. In general, they don't care about constants, so if you have an input of n bits, whether it takes two operations per bit or a hundred operations per bit, we say the algorithm takes O(n) time. This is because if we have an algorithm that runs in O(n^2) time (polynomial... in this case, square time) and we imagine a O(n) algorithm that does 100 operations per bit compared to our algorithm which may do 1 operation per bit, once the input size is 100 bits, the polynomial algorithm starts to run really slow really quickly (compared to our other algorithm). Essentially, you can imagine two lines, y=100x and y=x^2. Your teacher probably made you do an exercise in Algebra (maybe it was calculus?) where you have to say which one is bigger as x approaches infinity. This is actually a key concept in divergence/convergence in calculus if you have gotten there already in mathematics. Regardless, with a little algebra, you can imagine our graphs intersecting at x=100, and y=x^2 being larger for all points where x is greater than 100.
As far as most textbooks are concerned, O(nlgn) or better is considered "fast". One example of a really bad algorithm to solve this problem would be the following:
crappyMultiplicationAlg(int a, int b)
int product = 0
for (b>0)
product = product + a
b = b-1
return product
This algorithm basically uses "b" as a counter and just keeps adding "a" to some variable for each time b counts down. To calculate how "fast" the algorithm is (in terms of algorithmic complexity) we count how many runs different components will take. In this case, we only have a for loop and some initialization (which is negligible in this case, ignore it). How many times does the for loop run? You may be saying "Hey, guy! It only runs 'b' times! That may not even be half the input. Thats way better than O(n) time!"
The trick here, is that we are concerned with the size of the input in terms of storage... and we all (should) know that to store an n bit integer, we need lgn bits. In other words, if we have x bits, we can store any (unsigned) number up to (2^x)-1. As a result, if we are using a standard 4 byte integer, that number could be up to 2^32 - 1 which is a number well into the billions, if my memory serves me right. If you dont trust me, run this algorithm with a number like 10,000,000 and see how long it takes. Still not convinced? Use a long to use a number like 1,000,000,000.
Since you didn't ask for help with the algorithm, Ill leave it for you as a homework exercise (not trying to be a jerk, I am a total geek and love algorithm problems). If you need help with it, feel free to ask! I already typed up some hints by accident since I didnt read your question properly at first.
EDIT: I accidentally did a crappy multiplication algorithm. An example of a really terrible division algorithm (i cheated) would be:
AbsolutelyTerribleDivisionAlg(int a, int b)
int quotient = 0
while crappyMultiplicationAlg(int b, int quotient) < a
quotient = quotient + 1
return quotient
This algorithm is bad for a whole bunch of reasons, not the least of which is the use of my crappy multiplication algorithm (which will be called more than once even on a relatively "tame" run). Even if we were allowed to use the * operator though, this is still a really bad algorithm, largely due to the same mechanism used in my awful mult alg.
PS There may be a fence-post error or two in my two algs... i posted them more for conceptual clarity than correctness. No matter how accurate they are at doing multiplication or division, though, never use them. They will give your laptop herpes and then cause it to burn up in a sulfur-y implosion of sadness.
I don't know what you mean by fast...and this seems like a basic question to test your thought process.
A simple function can be use a counter and keep subtracting the divisor from the dividend till it becomes 0. This is O(n) process.
int divide(int n, int d){
int c = 0;
while(1){
n -= d;
if(n >= 0)
c++;
else
break;
}
return c;
}
Another way can be using shift operator, which should do it in log(n) steps.
int divide(int n, int d){
if(d <= 0)
return -1;
int k = d;
int i, c, index=1;
c = 0;
while(n > d){
d <<= 1;
index <<= 1;
}
while(1){
if(k > n)
return c;
if(n >= d){
c |= index;
n -= d;
}
index >>= 1;
d >>= 1;
}
return c;
}
This is just like integer division as we do in High-School Mathematics.
PS: If you need a better explanation, I will. Just post that in comments.
EDIT: edited the code wrt Erobrere's comment.
The simplest way to perform a division is by successive subtractions: subtract b from a as long as a remains positive. The quotient is the number of subtractions performed.
This can be pretty slow, as you will perform q subtractions and tests.
With a=28 and b=3,
28-3-3-3-3-3-3-3-3-3=1
the quotient is 9 and the remainder 1.
The next idea that comes to mind is to subtract several times b in a single go. We can try with 2b or 4b or 8b... as these numbers are easy to compute with additions. We can go as for as possible as long as the multiple of b does not exceed a.
In the example, 2³.3 is the largest multiple which is possible
28>=2³.3
So we subtract 8 times 3 in a single go, getting
28-2³.3=4
Now we continue to reduce the remainder with the lower multiples, 2², 2 and 1, when possible
4-2².3<0
4-2.3 <0
4-1.3 =1
Then our quotient is 2³+1=9 and the remainder 1.
As you can check, every multiple of b is tried once only, and the total number of attempts equals the number of doublings required to reach a. This number is just the number of bits required to write q, which is much smaller than q itself.
This is not the fastest solution, but I think it's readable enough and works:
def weird_div(dividend, divisor):
if divisor == 0:
return None
dend = abs(dividend)
dsor = abs(divisor)
result = 0
# This is the core algorithm, the rest is just for ensuring it works with negatives and 0
while dend >= dsor:
dend -= dsor
result += 1
# Let's handle negative numbers too
if (dividend < 0 and divisor > 0) or (dividend > 0 and divisor < 0):
return -result
else:
return result
# Let's test it:
print("49 divided by 7 is {}".format(weird_div(49,7)))
print("100 divided by 7 is {} (Discards the remainder) ".format(weird_div(100,7)))
print("-49 divided by 7 is {}".format(weird_div(-49,7)))
print("49 divided by -7 is {}".format(weird_div(49,-7)))
print("-49 divided by -7 is {}".format(weird_div(-49,-7)))
print("0 divided by 7 is {}".format(weird_div(0,7)))
print("49 divided by 0 is {}".format(weird_div(49,0)))
It prints the following results:
49 divided by 7 is 7
100 divided by 7 is 14 (Discards the remainder)
-49 divided by 7 is -7
49 divided by -7 is -7
-49 divided by -7 is 7
0 divided by 7 is 0
49 divided by 0 is None
unsigned bitdiv (unsigned a, unsigned d)
{
unsigned res,c;
for (c=d; c <= a; c <<=1) {;}
for (res=0;(c>>=1) >= d; ) {
res <<= 1;
if ( a >= c) { res++; a -= c; }
}
return res;
}
The pseudo code:
count = 0
while (dividend >= divisor)
dividend -= divisor
count++
//Get count, your answer

Generate random floats from random bytes without bit-twiddling

Assuming I have a good-enough(tm) stream of random byte values, is there a mathematical way to convert these into (0 < n < 1) floating-point values that does not need to know the internal format of the floats?
I'm looking for something that:
Doesn't require bitwise operations (on the floats), and
Is an iterative process that we can know will give a good value after n iterations, where n is a function of the output precision.
A general process that can be used for floats of any precision, by simply changing the number of iterations, ie consuming more input bytes to generate a double than a single-precision float.
The naive solution is to just build yourself a big integer from a few bytes, and then simply convert to float divide by 2^n, but I can't see how to do it without messing up the distribution.
Another idea is something like this (pseudocode):
state := 0.0
n := requiredIterations(outputPrecision)
for(1..n)
nextByte := getRandomByte()
state := state + nextByte
state := state / 256
end
return state
It seems like this should work, but I don't know how to prove it :)
ok, I think I've got what you need
let's consider sampling float in the range [0...1) in the following way. 256 is 2^8 which is equivalent to next byte shift. Lets combine bytes as
b0*256*256*256 + b1*256*256 + b2*256 + b3
To get number in [0...1) range you have to divide it by 256*256*256*256, thus
f = b0/256 + b1/(256*256) + b2/(256*256*256) + b3/(256*256*256*256)
which, in turn, is equivalent to Horner scheme of polynomials computation
f = (1/256)*(b0 + (1/256)*(b1 + (1/256)*(b2 + (1/256)*b3)))
which, in turn, pretty much what you wrote (for some abstract N)
As Severin Pappadeux says, why not just do something like
const double factor = 2.32830643653869628906e-10; // 2^(-32)
unsigned int accumulator = 0;
for (int i = 0; i != 4; ++i)
{
accumulator <<= 8;
accumulator |= getRandomByte();
}
double r = factor * accumulator;

How to compute the integer absolute value

How to compute the integer absolute value without using if condition.
I guess we need to use some bitwise operation.
Can anybody help?
Same as existing answers, but with more explanations:
Let's assume a twos-complement number (as it's the usual case and you don't say otherwise) and let's assume 32-bit:
First, we perform an arithmetic right-shift by 31 bits. This shifts in all 1s for a negative number or all 0s for a positive one (but note that the actual >>-operator's behaviour in C or C++ is implementation defined for negative numbers, but will usually also perform an arithmetic shift, but let's just assume pseudocode or actual hardware instructions, since it sounds like homework anyway):
mask = x >> 31;
So what we get is 111...111 (-1) for negative numbers and 000...000 (0) for positives
Now we XOR this with x, getting the behaviour of a NOT for mask=111...111 (negative) and a no-op for mask=000...000 (positive):
x = x XOR mask;
And finally subtract our mask, which means +1 for negatives and +0/no-op for positives:
x = x - mask;
So for positives we perform an XOR with 0 and a subtraction of 0 and thus get the same number. And for negatives, we got (NOT x) + 1, which is exactly -x when using twos-complement representation.
Set the mask as right shift of integer by 31 (assuming integers are stored as two's-complement 32-bit values and that the right-shift operator does sign extension).
mask = n>>31
XOR the mask with number
mask ^ n
Subtract mask from result of step 2 and return the result.
(mask^n) - mask
Assume int is of 32-bit.
int my_abs(int x)
{
int y = (x >> 31);
return (x ^ y) - y;
}
One can also perform the above operation as:
return n*(((n>0)<<1)-1);
where n is the number whose absolute need to be calculated.
In C, you can use unions to perform bit manipulations on doubles. The following will work in C and can be used for both integers, floats, and doubles.
/**
* Calculates the absolute value of a double.
* #param x An 8-byte floating-point double
* #return A positive double
* #note Uses bit manipulation and does not care about NaNs
*/
double abs(double x)
{
union{
uint64_t bits;
double dub;
} b;
b.dub = x;
//Sets the sign bit to 0
b.bits &= 0x7FFFFFFFFFFFFFFF;
return b.dub;
}
Note that this assumes that doubles are 8 bytes.
I wrote my own, before discovering this question.
My answer is probably slower, but still valid:
int abs_of_x = ((x*(x >> 31)) | ((~x + 1) * ((~x + 1) >> 31)));
If you are not allowed to use the minus sign you could do something like this:
int absVal(int x) {
return ((x >> 31) + x) ^ (x >> 31);
}
For assembly the most efficient would be to initialize a value to 0, substract the integer, and then take the max:
pxor mm1, mm1 ; set mm1 to all zeros
psubw mm1, mm0 ; make each mm1 word contain the negative of each mm0 word
pmaxswmm1, mm0 ; mm1 will contain only the positive (larger) values - the absolute value
In C#, you can implement abs() without using any local variables:
public static long abs(long d) => (d + (d >>= 63)) ^ d;
public static int abs(int d) => (d + (d >>= 31)) ^ d;
Note: regarding 0x80000000 (int.MinValue) and 0x8000000000000000 (long.MinValue):
As with all of the other bitwise/non-branching methods shown on this page, this gives the single non-mathematical result abs(int.MinValue) == int.MinValue (likewise for long.MinValue). These represent the only cases where result value is negative, that is, where the MSB of the two's-complement result is 1 -- and are also the only cases where the input value is returned unchanged. I don't believe this important point was mentioned elsewhere on this page.
The code shown above depends on the value of d used on the right side of the xor being the value of d updated during the computation of left side. To C# programmers this will seem obvious. They are used to seeing code like this because .NET formally incorporates a strong memory model which strictly guarantees the correct fetching sequence here. The reason I mention this is because in C or C++ one may need to be more cautious. The memory models of the latter are considerably more permissive, which may allow certain compiler optimizations to issue out-of-order fetches. Obviously, in such a regime, fetch-order sensitivity would represent a correctness hazard.
If you don't want to rely on implementation of sign extension while right bit shifting, you can modify the way you calculate the mask:
mask = ~((n >> 31) & 1) + 1
then proceed as was already demonstrated in the previous answers:
(n ^ mask) - mask
What is the programming language you're using? In C# you can use the Math.Abs method:
int value1 = -1000;
int value2 = 20;
int abs1 = Math.Abs(value1);
int abs2 = Math.Abs(value2);

What's the fastest algorithm to divide an integer by 3 without using a division instruction? [duplicate]

int x = n / 3; // <-- make this faster
// for instance
int a = n * 3; // <-- normal integer multiplication
int b = (n << 1) + n; // <-- potentially faster multiplication
The guy who said "leave it to the compiler" was right, but I don't have the "reputation" to mod him up or comment. I asked gcc to compile int test(int a) { return a / 3; } for an ix86 and then disassembled the output. Just for academic interest, what it's doing is roughly multiplying by 0x55555556 and then taking the top 32 bits of the 64 bit result of that. You can demonstrate this to yourself with eg:
$ ruby -e 'puts(60000 * 0x55555556 >> 32)'
20000
$ ruby -e 'puts(72 * 0x55555556 >> 32)'
24
$
The wikipedia page on Montgomery division is hard to read but fortunately the compiler guys have done it so you don't have to.
This is the fastest as the compiler will optimize it if it can depending on the output processor.
int a;
int b;
a = some value;
b = a / 3;
There is a faster way to do it if you know the ranges of the values, for example, if you are dividing a signed integer by 3 and you know the range of the value to be divided is 0 to 768, then you can multiply it by a factor and shift it to the left by a power of 2 to that factor divided by 3.
eg.
Range 0 -> 768
you could use shifting of 10 bits, which multiplying by 1024, you want to divide by 3 so your multiplier should be 1024 / 3 = 341,
so you can now use (x * 341) >> 10
(Make sure the shift is a signed shift if using signed integers), also make sure the shift is an actually shift and not a bit ROLL
This will effectively divide the value 3, and will run at about 1.6 times the speed as a natural divide by 3 on a standard x86 / x64 CPU.
Of course the only reason you can make this optimization when the compiler cant is because the compiler does not know the maximum range of X and therefore cannot make this determination, but you as the programmer can.
Sometime it may even be more beneficial to move the value into a larger value and then do the same thing, ie. if you have an int of full range you could make it an 64-bit value and then do the multiply and shift instead of dividing by 3.
I had to do this recently to speed up image processing, i needed to find the average of 3 color channels, each color channel with a byte range (0 - 255). red green and blue.
At first i just simply used:
avg = (r + g + b) / 3;
(So r + g + b has a maximum of 768 and a minimum of 0, because each channel is a byte 0 - 255)
After millions of iterations the entire operation took 36 milliseconds.
I changed the line to:
avg = (r + g + b) * 341 >> 10;
And that took it down to 22 milliseconds, its amazing what can be done with a little ingenuity.
This speed up occurred in C# even though I had optimisations turned on and was running the program natively without debugging info and not through the IDE.
See How To Divide By 3 for an extended discussion of more efficiently dividing by 3, focused on doing FPGA arithmetic operations.
Also relevant:
Optimizing integer divisions with Multiply Shift in C#
Depending on your platform and depending on your C compiler, a native solution like just using
y = x / 3
Can be fast or it can be awfully slow (even if division is done entirely in hardware, if it is done using a DIV instruction, this instruction is about 3 to 4 times slower than a multiplication on modern CPUs). Very good C compilers with optimization flags turned on may optimize this operation, but if you want to be sure, you are better off optimizing it yourself.
For optimization it is important to have integer numbers of a known size. In C int has no known size (it can vary by platform and compiler!), so you are better using C99 fixed-size integers. The code below assumes that you want to divide an unsigned 32-bit integer by three and that you C compiler knows about 64 bit integer numbers (NOTE: Even on a 32 bit CPU architecture most C compilers can handle 64 bit integers just fine):
static inline uint32_t divby3 (
uint32_t divideMe
) {
return (uint32_t)(((uint64_t)0xAAAAAAABULL * divideMe) >> 33);
}
As crazy as this might sound, but the method above indeed does divide by 3. All it needs for doing so is a single 64 bit multiplication and a shift (like I said, multiplications might be 3 to 4 times faster than divisions on your CPU). In a 64 bit application this code will be a lot faster than in a 32 bit application (in a 32 bit application multiplying two 64 bit numbers take 3 multiplications and 3 additions on 32 bit values) - however, it might be still faster than a division on a 32 bit machine.
On the other hand, if your compiler is a very good one and knows the trick how to optimize integer division by a constant (latest GCC does, I just checked), it will generate the code above anyway (GCC will create exactly this code for "/3" if you enable at least optimization level 1). For other compilers... you cannot rely or expect that it will use tricks like that, even though this method is very well documented and mentioned everywhere on the Internet.
Problem is that it only works for constant numbers, not for variable ones. You always need to know the magic number (here 0xAAAAAAAB) and the correct operations after the multiplication (shifts and/or additions in most cases) and both is different depending on the number you want to divide by and both take too much CPU time to calculate them on the fly (that would be slower than hardware division). However, it's easy for a compiler to calculate these during compile time (where one second more or less compile time plays hardly a role).
For 64 bit numbers:
uint64_t divBy3(uint64_t x)
{
return x*12297829382473034411ULL;
}
However this isn't the truncating integer division you might expect.
It works correctly if the number is already divisible by 3, but it returns a huge number if it isn't.
For example if you run it on for example 11, it returns 6148914691236517209. This looks like a garbage but it's in fact the correct answer: multiply it by 3 and you get back the 11!
If you are looking for the truncating division, then just use the / operator. I highly doubt you can get much faster than that.
Theory:
64 bit unsigned arithmetic is a modulo 2^64 arithmetic.
This means for each integer which is coprime with the 2^64 modulus (essentially all odd numbers) there exists a multiplicative inverse which you can use to multiply with instead of division. This magic number can be obtained by solving the 3*x + 2^64*y = 1 equation using the Extended Euclidean Algorithm.
What if you really don't want to multiply or divide? Here is is an approximation I just invented. It works because (x/3) = (x/4) + (x/12). But since (x/12) = (x/4) / 3 we just have to repeat the process until its good enough.
#include <stdio.h>
void main()
{
int n = 1000;
int a,b;
a = n >> 2;
b = (a >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
printf("a=%d\n", a);
}
The result is 330. It could be made more accurate using b = ((b+2)>>2); to account for rounding.
If you are allowed to multiply, just pick a suitable approximation for (1/3), with a power-of-2 divisor. For example, n * (1/3) ~= n * 43 / 128 = (n * 43) >> 7.
This technique is most useful in Indiana.
I don't know if it's faster but if you want to use a bitwise operator to perform binary division you can use the shift and subtract method described at this page:
Set quotient to 0
Align leftmost digits in dividend and divisor
Repeat:
If that portion of the dividend above the divisor is greater than or equal to the divisor:
Then subtract divisor from that portion of the dividend and
Concatentate 1 to the right hand end of the quotient
Else concatentate 0 to the right hand end of the quotient
Shift the divisor one place right
Until dividend is less than the divisor:
quotient is correct, dividend is remainder
STOP
For really large integer division (e.g. numbers bigger than 64bit) you can represent your number as an int[] and perform division quite fast by taking two digits at a time and divide them by 3. The remainder will be part of the next two digits and so forth.
eg. 11004 / 3 you say
11/3 = 3, remaineder = 2 (from 11-3*3)
20/3 = 6, remainder = 2 (from 20-6*3)
20/3 = 6, remainder = 2 (from 20-6*3)
24/3 = 8, remainder = 0
hence the result 3668
internal static List<int> Div3(int[] a)
{
int remainder = 0;
var res = new List<int>();
for (int i = 0; i < a.Length; i++)
{
var val = remainder + a[i];
var div = val/3;
remainder = 10*(val%3);
if (div > 9)
{
res.Add(div/10);
res.Add(div%10);
}
else
res.Add(div);
}
if (res[0] == 0) res.RemoveAt(0);
return res;
}
If you really want to see this article on integer division, but it only has academic merit ... it would be an interesting application that actually needed to perform that benefited from that kind of trick.
Easy computation ... at most n iterations where n is your number of bits:
uint8_t divideby3(uint8_t x)
{
uint8_t answer =0;
do
{
x>>=1;
answer+=x;
x=-x;
}while(x);
return answer;
}
A lookup table approach would also be faster in some architectures.
uint8_t DivBy3LU(uint8_t u8Operand)
{
uint8_t ai8Div3 = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ....];
return ai8Div3[u8Operand];
}

Given numbers from 1 to 2^32-1, one is missing. How to find the missing number optimally?

You are given 2^32-2 unique numbers that range from 1 to 2^32-1. It's impossible to fit all the numbers into memory (thus sorting is not an option). You are asked to find the missing number. What would be the best approach to this problem?
Let's assume you cannot use big-integers and are confined to 32bit ints.
ints are passed in through standard in.
Major Edit: Trust me to make things much harder than they have to be.
XOR all of them.
I'm assuming here that the numbers are 1 to 232 - 1 inclusive. This should use 1 extra memory location of 32 bits.
EDIT: I thought I could get away with magic. Ah well.
Explanation:
For those who know how Hamming Codes work, it's the same idea.
Basically, for all numbers from 0 to 2n - 1, there are exactly 2(n - 1) 1s in each bit position of the number. Therefore xoring all those numbers should actually give 0. However, since one number is missing, that particular column will give one, because there's an odd number of ones in that bit position.
Note: Although I personally prefer the ** operator for exponentiation, I've changed mine to ^ because that's what the OP has used. Don't confuse ^ for xor.
Add all the numbers you are given up using your favourite big integer library, and subtract that total from the sum of all the numbers from 1 to 2^32-1 as obtained from the sum of arithmetic progression formula
Use bitwise operator XOR. Here are example in JavaScript:
var numbers = [6, 2, 4, 5, 7, 1]; //2^3 exclude one, starting from 1
var result = 0;
//xor all values in numbers
for (var i = 0, l = numbers.length; i < l; i++) {
result ^= numbers[i];
}
console.log(result); //3
numbers[0] = 3; //replace 6 with 3
//same as above in functional style
result = numbers.reduce(function (previousValue, currentValue, index, array) {return currentValue ^= previousValue;});
console.log(result); //6
The same in C#:
int[] numbers = {3, 2, 4, 5, 7, 1};
int missing = numbers.Aggregate((result, next) => result ^ next);
Console.WriteLine(missing);
Assuming you can get the Size() you can use some binary approach. Select the set of numbers n where n< 2^32 -2 / 2. then get a count. The missing side should report a lower count. Do the process iteratively then you will get the answer
If you do not have XOR, then of course you can do the same with ordinary "unchecked" sum, that is sum of 32-bit integers with "wrap around" (no "overflow checking", sometimes known as unchecked context).
This is addition modulo 232. I will consider the "unsigned" case. If you 32-bit int uses two's complement, it is just the same. (To a mathematician, two's complement is still just addition (and multiplication) modulo 232, we only pick a different canonical representative for each equivalence class modulo 232.)
If we had had all the non-zero 32-bit integers, we would have:
1 + 2 + 3 + … + 4294967295 ≡ 2147483648
One way of realizing this is to take the first and the last term together, they give zero (modulo 232). Then the second term (2) and the second-last term (4294967294) also give zero. Thus all terms cancel except the middle one (2147483648) which is then equal to the sum.
From this equality, imagine you subtract one of the numbers (call it x) on both sides of the ≡ symbol. From this, you see that you find the missing number by starting from 2147483648 and subtracting (still unchecked) from that all of the numbers you are given. Then you end up with the missing number:
missingNumber ≡ 2147483648 - x1 - x2 - x3 - … - x4294967294
Of course, this is the same as moonshadow's solution, just carried out in the ring of integers modulo 232.
The elegant XOR solution (sykora's answer) can also be written in the same way, and with that XOR functions as both + and - at the same time. That is, if we had all the non-zero 32-bit integers, then
1 XOR 2 XOR 3 XOR … XOR 4294967295 ≡ 0
and then XOR with the missing number x on both sides of the ≡ symbol to see that:
missingNumber ≡ x1 XOR x2 XOR x3 XOR … XOR x4294967294

Resources